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Chapter 1

Introduction

1.1 Energy Industry

The beginning of 1990s was the start of the liberalization of electricity
and gas markets, resulting in the emergence of markets for corresponding
spot and derivative products in numerous countries and regions all over
the world. These assets are in many ways distinct in nature from the more
“classical” commodity markets as oil, coal, metals and agriculture. One
of the main characteristics of electricity is the existence of seasonality and
spikes in prices and limited storage possibilities. As a result of the latter,
the electricity markets tend to be regional. This means that different prices
of electricity between two regions, do not necessarily imply an arbitrage
opportunity. An arbitrageur cannot buy for storage and transportation,
and therefore the spot asset cannot be used to set up dynamic hedging
strategies exploiting price differentials.
Those features are also shared by temperature and natural gas markets.
Temperature is obviously not possible to store. Natural gas on the other
hand, can be stored, but most often it is quite costly. Benth et al. (2008)
refer to these two markets as the related markets of electricity, because
they share similarities with the electricity market from a modeling point
of view.

1.1.1 Energy markets

The main power exchanges in Europe include Nord Pool (Norway, Swe-
den, Denmark and Finland), EEX (Germany), Powernext (France), APX
(Netherlands, Belgium, and UK), Endex (Netherlands), Belpex (Belgium),
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1.1. ENERGY INDUSTRY

OMEL (Spain) and GME (Italy). With regard the gas markets, they are
located around different hubs, which are connection and arrival points for
gas transportation systems and where there are infrastructure capabilities
like, for instance, storage and a concentration of buyers and sellers. Two
important hubs are Henry Hub located in Louisiana (US) at the Gulf of
Mexico and the National Balancing Point (NBP) in the UK. The latter
is a notional hub without any physical location, where all UK gas flows
through.
The market for short-term delivery of gas or electricity is usually referred
to as the spot market, and the trading is mostly over-the-counter OTC.
Futures contracts on both markets ensure the delivery of the underlying
over longer time periods like weeks, months, quarters, or even years. Con-
tracts on Nord Pool are not traded during the delivery period, and market
participants typically close their position prior to the start of the delivery
period.

1.1.2 Energy contracts

A portfolio of energy commodities typically consists of different trading
products. As the spot is not tradable asset in the electricity, gas or tem-
perature markets, derivatives such as futures and forwards on the spot are
introduced for both trading and risk management. A forward contract is
an agreement between two parties for delivery of the underlying commod-
ity at a predetermined date at a predetermined price. A different delivery
date leads to a different forward price. The relation between the delivery
date and the forward price is called the forward curve. The spot price
contract can be viewed as a forward contract with immediate delivery.
Closely related to the forward contracts are the futures contracts. There
are some small differences in payment streams and other details in the
contract, but for practical purposes, the two contracts can be regarded
similar. In fact, the price of both is the same when the interest rate is
assumed constant. Analysis of the behavior of these prices, which we will
go through later within this chapter, shows that electricity and gas is a
seasonal commodity, the change of seasons are a strong driver of the prices.
Besides this structural price level, there is a difference between having an
amount of gas at this moment and receiving it after a given time period.
When a pipeline breaks or another event happens that makes the provision
of gas impossible, there is an immediate shortage and prices are likely to
increase on such an occasion. This typically only affects the spot market,
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CHAPTER 1. INTRODUCTION

but not the long-term prices. One can profit from this situation with high
prices only, if the alternative gas is readily available, for example from a
storage facility.
Other trading instruments are for example fixed-for-floating swaps and
options. Under a swap contract, one party pays a fixed price to a second
party, who pays a market dependent price in return. A forward is an ex-
ample of a simple swap, usually a swap consists of more than one payment
stream. An options contract gives the buyer the right (not the obligation)
to buy or sell a certain volume at a predetermined price and at a prede-
termined time. The biggest difference between a forward and an option
is the pay-out at maturity. Under the forward contract, you are obliged
to buy or sell at the negotiated price, even if it is far above or below the
then prevalent market price. With regard to the option contract, as is
captured in the name, the owner of an option can decide at maturity if he
wishes to exercise the right to buy or sell or not. In the energy markets,
the most developed instruments are forwards/futures and swaps. These
contracts are often traded and the markets are liquid. In the remainder of
this thesis, the main focus will be on forwards and futures.

1.1.3 Day ahead (DA) spot market

In this section we briefly describe the structure of the spot markets. In
particular, the APX and EEX as examples of the electricity market and
the UK-GAS-NBP as an example of the gas market. The spot market is
24-hour ahead market, which means that every day an auction takes place
based on the bidding from buyers and sellers of electricity, and around
12-AM, prices for each hour of the next day are quoted, whence the term
(DA) price is used. The spot price is an equilibrium price of demand and
supply determined by market players, such as production and distribution
companies, large consumers, brokers and traders. Thus the electricity spot
market is not the same as in classical definition of spot market of some com-
modity, where delivery is carried out immediately. The hourly instruments
are subject to physical delivery of electricity of a constant output on the
electricity grid.
As a result of non-storability of electricity the immediate delivery of elec-
tricity is possible only in exceptional cases. On EEX and APX mostly
hourly contracts are traded, but also the half-hourly contracts on APX are
available. Since the contracts are settled against hourly (DA) prices, the

3



1.1. ENERGY INDUSTRY

underlying amount of electrical energy is determined by

DP × 24MWh,

with DP being the delivery period measured in days. To be able to com-
pare contracts with different delivery periods, prices are listed in Euros for
1 MWh of power delivered as a constant flow during the delivery period.
In the Gas market, the energy content of gas is measured in units of
“therms” or British thermal units Btu. By definition, there are 100,000
Btu in 1 therm, whereas 1 therm is the equivalent of 105.5 MJ. Since there
are 3.6 GJ per MWh, we have the relation

1 therm = 105.5MJ × MWh

3.6× 1000MJ
≈ 0.029MWh.

Although the spot prices reflect only physical contracts, they are also un-
derlying bases for many derivatives on the electricity market, which could
be either with physical or financial delivery. See Figure 1.1, which shows
a time series of average daily prices of APX and EEX electricity markets,
respectively. Figure 1.2 shows a time series of (DA) prices of UK-Gas-NBP.
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Figure 1.1: Up: APX daily spot prices in euros per MWh, Jan 2001 - Dec
2004. Down: EEX daily spot prices in euros per MWh, Jun 2000 - Dec
2005.
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Figure 1.2: UK-Gas-NBP daily spot prices in euros per therm, Jan 2007 -
April 2008

1.1.4 Characteristics of the DA spot prices

The spot prices dynamics are stochastic, for that we use stochastic factors
to represent this dynamics. However, spot prices can contain some outliers
in the form of large positive or negative prices. Hence, it is reasonable
first, to remove the outliers from the data. The next step is to specify the
deterministic components such as trend and seasonality. Typically, these
deterministic components are absorbed into the stochastic factor model
through a deterministic function.

Removing the Spikes

Looking at Figure 1.1 and Figure 1.2, we see from the plots that there
may be some outliers present in the data. To detect the possible outliers,
we analyze daily changes in the logarithm of the spot prices. See Figure
1.3, which shows the plot of the log returns of the APX data. Obviously,
these price changes are not normally distributed as can be seen from the
histogram in the same figure. To check and remove outliers in data that
are not normally distributed, the following simple statistic can be used.
Following Benth et al. (2008), given the lower and upper quartiles, Q1 and
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1.1. ENERGY INDUSTRY

Q3, respectively, and the interquartile range IQR, defined as the difference
between the upper and the lower quartile, an observation is called an outlier
if it is smaller than Q1 − 3× IQR, or larger than Q3 + 3× IQR. We then
substituted the detected outliers in the time series with the average of
the two closest observations. Figure 1.4 shows the data of the APX after
removing these spikes, together with its histogram.
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Figure 1.3: Up: APX daily log returns before removing the spikes. Down:
Histogram of the above log returns
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Figure 1.4: Up: APX daily log returns after removing the spikes. Down:
Histogram of the APX log returns after removing the spikes
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Similar analysis to the EEX spot data are shown in Figure 1.5 and
Figure 1.6, and the data corresponding to the UK-Gas-NBP market before
and after removing the spikes is also shown in Figure 1.7 and Figure 1.8,
respectively.
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Figure 1.5: Up: EEX daily log returns before removing the spikes. Down:
Histogram of the above log returns
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Figure 1.6: Up: EEX daily log returns after removing the spikes. Down:
Histogram of the EEX log returns after removing the spikes
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Figure 1.7: Up: UK-Gas-NBP daily log returns before removing the spikes.
Down: Histogram of the above log returns
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Figure 1.8: Up: UK-Gas-NBP daily log returns after removing the spikes.
Down: Histogram of the gas log returns after removing the spikes

Identifying the Trend

To model the trend, we consider a linear function describing the increase
in the logarithm of the price level, given by T (t) = a0 + a1t. The two
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CHAPTER 1. INTRODUCTION

parameters a0 and a1 are found by following the least square approach
given by

min
a0,a1

∫ tf

0
| log S(t)− (a0 + a1t)|2dt, (1.1)

where tf is the final time and S(t) is the spot data at time t (after removing
the outliers).

Characterizing the Seasonality

To get the seasonality component, we remove the trend component and
consider the following functional form applied to the logarithmic of the
cleaned spot prices:

hp(t) =
N∑

k=1

bk sin(2πfkt) + ck cos (2πfkt) , (1.2)

where the frequencies fk are identified by using the Fast Fourier Trans-
form (FFT). After determining these frequencies fk, we determine the
coefficients bk, ck by using the least square method again.

Trend and seasonality analysis for APX data

From the APX data and after removing the spikes as shown in Figure 1.4,
we first identify the coefficients a0, a1 of the linear trend using equation
(1.1). We get a0 = 3.2215, a1 = 0.0643. In Figure 1.9, the APX data
(without spikes) and the fitted linear trend are shown.

Now following Moler (2004), we subtract the linear trend from the
data, see Figure 1.10 and then, we apply the FFT to the new data. The
periodogram which represents the plot of the power of the signal versus
frequency is shown is Figure 1.11.
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Figure 1.9: APX daily log returns after removing the spikes with a linear
trend
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Figure 1.11: Periodogram of Apx data

To identify the seasonality part, we look at the frequencies that corre-
spond to the largest four powers, as can be seen from Figure 1.12.
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Figure 1.12: Zoomed periodogram of APX data

The identified frequencies are in terms of cycles per day. The corre-
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sponding periods are the reciprocal of these frequencies. Table 1.1 sum-
marizes the result.

Table 1.1: The largest frequencies and the corresponding periods of the
APX spot data

Frequency f (cycles/day) Period (in day)

0.0014 ≈ 720.00 (2 years)
0.0027 ≈ 365.00 (1 year)
0.1424 ≈ 7.00 (1 week)
0.1431 ≈ 7.00 (1 week)

Now, using these frequencies, we continue to identify the coefficients
bk, ck of equation (1.2) by using the least square method again to fit the
data. We get

b1 = 0.0828 b2 = −0.1026 b3 = −1.6841 b4 = 1.7449

c1 = 0.0163 c2 = 0.0652 c3 = −1.0601 c4 = 0.8434

The original spot price together with the identified seasonality and trend
functions are shown in Figure 1.13.
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Figure 1.13: log of APX data together with the imposed seasonality plus
trend
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Trend and seasonality analysis for EEX data

Repeating the same procedure to the EEX data. The coefficients a0, a1 of
the linear trend function are given by a0 = 2.8243, a1 = 0.1566. Figure
1.14, shows the linear trend function imposed on the data.
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Figure 1.14: log of EEX data and a linear trend

Also the periodogram is shown in Figure 1.15.
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Figure 1.15: Periodogram of the EEX data
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Form Figure 1.15, we can identify the following four prominent fre-
quencies. Again, we then zoom in to the windows that corresponds to the
high powers. Figure 1.16 shows the plot and Table 1.2 shows the necessary
frequencies and its periods.

0 0.01 0.02
0

50

100

150

200

250

cycles/day

po
w

er

0.13 0.14 0.15 0.16
0

50

100

150

200

250

cycles/day

po
w

er

0.26 0.28 0.3
0

50

100

150

200

250

cycles/day

po
w

er

0.42 0.43 0.44
0

50

100

150

200

250

cycles/day

po
w

er

Figure 1.16: Zoomed periodogram of the EEX data

Table 1.2: The largest frequencies and the corresponding periods of the
EEX spot data

Frequency f(cycles/day) Period (in day)

0.0005 ≈ 2000.00 (5.4 years)
0.1427 ≈ 7.00 (1 week)
0.2891 ≈ 2.60
0.4286 ≈ 2.30
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Hence the seasonality of this data is concentrated around a week and
two or three days. Figure 1.17 presents the original spot price data together
with the imposed trend and seasonality functions.
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Figure 1.17: log of Eex data and seasonality plus trend

Finally, the coefficients bk, ck characterizing the whole seasonality func-
tion, using least square method is given by

b1 = 0.0484 b2 = −0.1107 b3 = −0.0147 b4 = 0.0544

c1 = 0.0918 c2 = −0.1692 c3 = 0.0039 c4 = −0.0610.

Trend and seasoning analysis for UK-Gas-NBP data

From the UK-Gas-NBP data, we can identify the following parameters for
the linear trend function as, a0 = 2.8122, a1 = 1.0295.

Figure 1.18, shows the trend function imposed on the data after re-
moving the spikes.
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Figure 1.18: log of UK-Gas-NBP data together with the trend function

The periodogram is also shown in Figure 1.19
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Figure 1.19: Periodogram of UK-Gas-NBP data

Notice here that most of the power is related to the short frequency
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region, i.e. The subplot in the upper left side of Figure 1.19. Notice that
we have presented the x axis in terms of cycles/year. Zooming into this
subplot, we get the enlarged figure appearing as Figure 1.20.
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Figure 1.20: Zoomed periodogram of UK-Gas-NBP data

Table 1.1.4 shows the details of the four main frequencies and its cor-
responding periods

Frequency f (cycles/year) Period (in year)

0.7668 ≈ 1.30 (15.6 months)
1.5336 ≈ 0.60 (7 months)
2.3004 ≈ 0.40 (5 months)
6.1345 ≈ 0.16 (2 months)

Moreover, The identified coefficients bk, ck are given by

b1 = −0.1131 b2 = 0.0679 b3 = 0.0936 b4 = 0.0779

c1 = 0.0586 c2 = 0.0600 c3 = 0.0871 c4 = −0.0454.

Finally we present the original UK NBP spot prices together with the
imposed trend and seasonality functions, shown in Figure 1.21.
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Figure 1.21: log of Gas data with the imposed linear trend and seasonality
functions

1.1.5 Energy futures markets

Although contracts for future delivery of power are called futures or for-
wards, this denomination may be misleading because the exchange traded
contracts at these markets are written on the (weighted) average of the
(hourly) system price (spot price) over a specified delivery period, see
Benth et al. (2008). During the delivery period the contract is settled in
cash against the system price. Hence, financial electricity contracts are in
fact swap contracts, exchanging a floating spot price against a fixed price.
The specified reference price is typically the day ahead (DA) spot price,
which has been discussed in Section 1.1.3.

More specifically, a futures contract is a contract that obliges the seller
of the contract to deliver and the buyer to receive a given quantity of elec-
tricity or gas over a fixed period [T0, T ] at a price K specified in advance.
The payoff of these futures are based on the arithmetic average of the spot

price
1

n

∑T
t=T0

S(t) and not one fixed spot price S(T ) as in most financial

and commodity futures markets. Here n is the number of days during
the delivery period [T0, T ]. See Figure 1.22 for a typical energy futures
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contract.
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Figure 1.22: Payoff of energy futures contract

1.1.6 Energy modeling approaches

In the energy market, there are two types of models used to model the
dynamics of the forward curve of energy commodities. One type of models
is the spot price model which explicitly defines the spot dynamics, from
which the forward dynamics can be constructed. A typical example is
Schwartz and Smith (2000) (SS) model, which is popular in the commodity
markets because it gives analytical solutions for the futures prices. See also
Schwartz (1997). Because of this feature, particularly (SS) model has been
adapted in the energy market with some modifications and approximations
to the payoff structure without affecting its mathematical tractability. The
other type of models uses the arbitrage-free framework of Heath et al.

(1992) (HJM), which describes the forward curve dynamics directly via
the use of volatility function(s). For examples, see Jamshidian (1991) and
Clewlow and Strickland (1999a,b).

1.2 Thesis Motivation

The two approaches of modeling, either by using factors or volatilities,
both have appealing features that they lead to tractable solutions for the
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derivatives’ prices. Both of these approaches have been used in the energy
market following the trend in multi-factor modeling of the term structure
of interest rates. However, these two markets are fundamentally different.
The main difference is related to the payoff structure of the same type of
contract, such as futures. This makes the methodology used in the interest
rate market inapplicable in the energy market.

Another important issue is related to the parameter estimation of the mod-
els representing the dynamics of both the spot and the futures. As a result
of dealing with unobservable factors, a popular estimation method that
has been proposed in the literature is the maximum likelihood estimation
(MLE) method under the assumption that observations are corrupted with
additive Gaussian noise. In this framework, the state space representation
is used together with the Kalman filtering techniques, and the parameter
estimates are obtained through maximization of a likelihood functional.

To make this approach mathematically feasible, some ad hoc observation
noise has to be added to the model in order to derive the Kalman filter
as has been made by numerous authors, see Elliott and Hyndman (2007).
The additional noise in the observation has been interpreted to take into
account bid-ask spreads, price limits, non-simultaneity of the observations,
or errors in the data. The argument is clearly forced, unconvincing and
hard to verify. Even if one ignores this aspect, there is an additional com-
plication with this approach. Since there is no feedback of the observation
noise to the spot price, this leads to a model that is not anymore an arbi-
trage free model.

1.3 Goal

The goal of this thesis is two folds: Starting from the two factor model of
Schwartz and Smith (2000), we formulate and implement a new arbitrage
free model for the futures prices of energy which can be used in a math-
ematically sound way when estimating the parameter of the model, using
the method of maximum likelihood (MLE). In this respect, we extend the
idea proposed in Aihara and Bagchi (2010a) to the energy market. Fol-
lowing this approach, we assume that a slightly different model will lead
to a slightly perturbed futures price from that derived using Schwartz and
Smith (2000). We consider this perturbation to be generated by an error
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term represented by a stochastic integral involving an infinite dimensional
noise term, reflecting the fact that it should depend on all times of or to
maturity.

In this setup, on the one hand, the added measurement noise is built
in within the model. On the other hand, the modeling of the correlation
structure between the futures (observation) is a natural component of our
formulation. Hence the model parameters can be calibrated through the
derived likelihood functional without adding any ad hoc observation noise.
The second goal is to estimate the parameters of the model without any
approximation to the nonlinear payoff of the futures (observation). For
that, we use the particle filtering methodology. Moreover, and on the
empirical side, we identify the parameters of the model using real data
from the European energy market.

1.4 Structure of the Thesis

The thesis is organized in six chapters. The contents of the remaining

chapters are briefly summarized as follows.

Chapter 2 This chapter contains the mathematical preliminaries needed

throughout the thesis. It starts with a description of the filtering problem,

then it goes through a review of the finite dimensional filter algorithm.

Here, we present the discrete Kalman filter algorithm, together with its

corresponding likelihood function. Also, we present the continuous version

of the filtering equations, with its likelihood functional. These algorithms

will be used in Chapter 3 and Chapter 4, respectively. Then we discuss the

particle filtering algorithm and discuss its main properties. For that, we

present a very basic review of Monte Carlo methods and importance sam-

pling. Next, we explain the Sequential Importance Sampling method. We

also discuss the problem of degeneracy associated with this method which

is followed by the resampling step to mitigate this problem. At the end

of this section, we present a generic particle filter algorithm. This section

will be used in both Chapter 3 and Chapter 5. The end of this chapter

contains a discussion of the infinite dimensional filter. For that we discuss

the infinite dimensional Brownian motion and explain why it is a natural

component in any term structure model. Then, we present the algorithm

of the infinite dimensional Kalman filter. The use of this algorithm will be
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presented in both Chapter 4 and Chapter 5.

Chapter 3 This chapter represents an illustration of the standard use

of both the Kalman filter and the particle filter in the finance literature.

By that we mean the assumption used in the literature that the measure-

ments (futures) are corrupted by noise. In the first part of this chapter we

use the Schwartz and Smith (2000) model as our basis. Using this model,

we derive the futures price that depends on a delivery period by employ-

ing the geometric approximation instead of the arithmetic average. The

main aim of this approximation is to keep the linearity of the resulting

model so that the Kalman filter can be used. Moreover, we implement a

sensitivity analysis for the likelihood function and show that the optimal

parameters are hard to find when using the MLE method. In the second

part of this chapter, we avoid this approximation and we use the particle

filter algorithm for the estimation of the parameters. This chapter is based

on Imreizeeq (2010).

Chapter 4 The main focus of this chapter is the development of a new

model for the energy market. Using reverse engineering concept, we start

by assuming that the dynamics of the futures is perturbed by extra term

that takes into account the uncertainties in both the time, and time of ma-

turity, of the term structure of the futures. After deriving the explicit re-

lation between the observed energy futures prices and the factor processes,

we employ the geometric approximation for the payoff of the futures. How-

ever, in contrast to Chapter 3, we employ the infinite dimensional Kalman

filter together with the MLE method to estimate the parameters. As the

observation noise covariance in this case is unknown, we derive a quasi like-

lihood functional. Moreover, we discuss the invertibility of the covariance

of the real observation data. At the end of this chapter, we use simulation

and real data of the spot and futures on the UK-Gas-NBP, and establish

the feasibility of the proposed filter. This chapter is based on Aihara et al.

(2009b).

Chapter 5 In this chapter, we extend the results of the previous chap-
ter by employing the particle filtering methodology as our method for
the parameter estimation of the new model of the futures prices. In
other words, we avoid the use of the geometric approximation to the
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payoff of the futures. Here, we propose to use a variant of the particle
filter, which is based on the convolution kernel approximation tech-
niques termed convolution particle filter. In order for this chapter to
be self-contained, we briefly repeat our discussion of Chapter 4 and
present the forward model together with the mechanism of the obser-
vation equation. Also, we discuss the discrete approximation for the
system and observation. Moreover, we show how to generate the two

dimensional noise term ∂w(t,x)
∂t

which appears in the dynamics of our
state equation. In this chapter, we employ the Bayesian framework
where the augmented state variable that contains the state and the
unknown parameters is processed by a filtering procedure. Finally,
we run a simulation study to test the feasibility of the proposed filter.
This chapter is based on Aihara et al. (2009a) and Aihara et al. (2011).

Chapter 6 This chapter presents conclusions and recommendations
on the possible directions for future research.

23





Chapter 2

Preliminaries

2.1 Introduction

We begin with a brief review of the filtering problem. We describe
both the discrete and continuous finite dimensional Kalman filters.
Then we describe the maximum likelihood functions which can be
used for the estimation of parameters. Then we go through the
particle filtering approach for state estimation and its variant algo-
rithms. We conclude this chapter with stating the infinite dimensional
Kalman filter algorithm.

2.2 The Filtering Problem

Following Bagchi (1993), consider a stochastic dynamical system,
which can be represented by either continuous/discrete stochastic
differential/ difference equations, respectively. These equations are
termed the system equation. Also we have a sequence of observa-
tions of some functions of the states. Typically, the state equation
represents unobserved states, and the measurement of some functions
of these states are typically corrupted with noise (measurement er-
ror). The measurement and state equations represent together what
is called the state-space form of the model. To explain the filtering
problem, suppose that the n-dimensional state vector Xk of a stochas-
tic dynamical system is not directly observed and is only available
through an observation mechanism which generates measurements
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Y1, Y2, · · ·, Yl. Suppose that we want to obtain an estimator of Xk on
the basis of the available observations Y1, Y2, · · ·, Yl in some optimal
way. One intuitively appealing approach is to consider the minimum
variance estimator of Xk based on the observations Y1, Y2, · · ·, Yl. To
make this idea clear let us stack all the m-dimensional observations
into one random vector Y(l) = [Y0 Y1 · · · Yl]′. The minimum variance

estimator of Xk, denoted X̂k|l, is a function of Yl such that for any
other function F of Yl,

E

[∥∥∥Xk − X̂k|l

∥∥∥
2
]
≤ E

[
‖Xk − F (Yl)‖2

]

The solution of this problem is well-known and is given by

X̂k|l = E [Xk|Yl]

The estimation problem is called filtering if k = l, prediction if
k > l and smoothing if k < l.

2.3 Finite Dimensional Filter

2.3.1 The discrete Kalman filter

Following Bagchi (1993), Consider the following discrete-time linear
stochastic dynamical system

Xk+1 = AkXk + BkUk + FkWk (2.1)

Yk = CkXk +Dk + Vk, k ≥ 0 (2.2)

where Xk is an n-dimensional random vector denoting the state at the
time instant k, the r-dimensional random vector Wk is the system
disturbance, Uk is a p-dimensional input (control) vector which is
either a deterministic sequence, or is such that Uk, for each fixed k,
is a (Borel measurable) function of Yk. Bk is a matrix of order n× p.
The m-dimensional random vector Yk denotes the observation and Vk
is the observation error. We assume that X0, {Wk} and {Vk} are
jointly Gaussian, X0 has mean x̄0, variance P̄0 and is independent of
{Wk} and {Vk}, k ≥ 0. Assume that EWk = EVk = 0, k ≥ 0 and

E

[(
Wk

Vk

)(
W

′

l V
′

l

)]
=

(
Σs

k

0
0
Σo

k

)
δkl (2.3)
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with Σo
k > 0 for all k.

The Kalman filtering problem is that of calculating E [Xk|Yk] or,

equivalently, X̂k , X̂k|k, where Yk = {Y0, Y1, · · · , Yk}. Kalman filter
recursive equations are:

1. Time update X̂k+1|k and Pk+1|k

X̂k+1|k = AkX̂k +BkUk (2.4)

Pk+1|k = AkPkA
′
k + FkΣ

s
kF

′
k (2.5)

where Pk+1|k , E

[(
Xk+1 − X̂k+1|k

)(
Xk+1 − X̂k+1|k

)′]

2. Measurement update X̂k+1 and Pk+1

X̂k+1 = X̂k+1|k +Kk+1νk+1 (2.6)

Kk+1 , Pk+1|kC
′
k+1

[
Ck+1Pk+1|kC

′
k+1 + Σo

k+1

]
(2.7)

νk+1 = Yk+1 − Ck+1X̂k+1|k −Dk (2.8)

Pk+1 = Pk+1|k − Pk+1|kC
′
k+1

×
[
Ck+1Pk+1|kC

′
k+1 + Σo

k+1

]−1
(2.9)

×Ck+1Pk+1|k

where Pk+1 , E
[
(Xk+1 − X̂k+1)(Xk+1 − X̂k+1)

′
]

As for the initial conditions, we can take: X̂0|−1 = x̄0, and
P (0| − 1) = P̄0.

Notice that the calculation of equations (2.5, 2.7, 2.9) do not
depend on the measurements Yk, but depend only on Ak, Ck, Σ

s
k

and Σo
k. That means that the Kalman gain Kk can be calculated

offline before the system operates and saved in memory. Only
equation (2.6) need to be implemented in real time. This has a
great advantage in practice.
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2.3.2 Likelihood function

Let us now assume that the system is time invariant; that is, Ak,
Bk, Fk, Ck, Dk are constants (independent of k) and some or all
components of these matrices are unknown. Let θ denote the vector
of all unknown parameters of the system (2.1, 2.2). One possible
way of estimating θ is to use the method of maximum likelihood.
For that we have to calculate the likelihood function which can be
obtained from the joint probability density of YN = {Y0, · · · , YN}.
This density using Bayes’ rule is given by

pYN
(yN ; θ) = pY1 (y1)

N∏

k=2

pYk|Yk−1,θ (yk|yk−1, θ)

where pYk|Yk−1,θ (yk|yk−1, θ) denotes the conditional probability den-
sity of Yk given Yk−1 and θ. From results of Kalman filtering, we
know that the innovation process νk given by (2.8) is a realization of
νk for a true parameter θ, is a Gaussian white noise with zero mean
and variance given by

Qk = CPk|k−1C
′

+ Σo (2.10)

Therefore,

pYN
(yN ; θ) = pY1 (y1)

N∏

k=2

[(2π)n |detQk|]
1
2

exp

(
−1

2
ν ′kQ

−1
k νk

)
(2.11)

The likelihood function is obtained from (2.11) by substituting YN

in place of the actual observation yN . Hence, the likelihood function
is given by

L (YN ; θ) = pYN
(YN ; θ) (2.12)

= pY1 (Y1)
N∏

k=2

[(2π)n |detQk|]
1
2 exp

(
−1

2
ν ′
kQ

−1
k νk

)
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where
νk = Yk − CX̂k|k−1 −D.

A maximum likelihood estimator of θ, denoted θ̂N , is that value of θ
for which L (YN ; θ) is a maximum, or equivalently, logL (YN ; θ) is a
maximum.

2.3.3 The continuous Kalman filter

Consider the following continuous -time linear stochastic dynamical
system

X(t) = X(t0) +

t∫

t0

A (τ)X(τ)dτ +

t∫

t0

B (τ) dτ +

t∫

t0

F (τ) dW s(τ)

(2.13)

Y (t) =

t∫

t0

C (τ)X(τ)ds+

t∫

t0

D (τ) dτ +W o(t), 0 ≤ t ≤ T (2.14)

where the state X(t), as in the discrete case, takes values in Rn, the
observation Y (t) takes values in Rm, {W s(t), t ≥ 0} and {W o(t), t ≥ 0}
are r and m dimensional Brownian motions, and A (t) , F (t) , C (t) ,
are matrices of order n×n, n×r, m×n, respectively. B (t) and D (t)
are deterministic functions of t of appropriate dimensions. X(t0) is
a Gaussian random vector that follows N

(
x̄ (t0) , P̄ (t0)

)
, with mean

x̄ (t0) and covariance matrix P̄ (0).
Assume that

E

[(
W s(t)
W o(t)

)(
W s′(τ) W o′(τ)

)]

=




min(t,τ)∫

0

Σs(σ)dσ

0

0
min(t,τ)∫

0

Σo(σ)dσ



 (2.15)

and Σo (t) > 0 for all t.

In this case, we may also try to determine the minimum variance
estimator. Let FY

t be the smallest σ- algebra generated by {Y (τ);
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t0 ≤ τ ≤ t}. The minimum variance estimator of X(t), based on the

observation FY
t , denoted by X̂(t), is an FY

t - measurable function,
such that for any FY

t - measurable function Ft,

E

[∥∥∥X(t)− X̂(t)
∥∥∥
2
]
≤ E

[
‖X(t)− Ft‖2

]

The solution of this problem is well-known and is given by

X̂(t) = E
[
Xt|FY

t

]

The recursive equation for the filter X̂(t) = E
[
Xt|FY

t ; t0 ≤ τ ≤ t
]

is given by

dX̂(t) = A (t) X̂(t)dt+B (t) dt+K (t) Σo (t)
−1 dν(t)

dν(t) = dY (t)− C (t) X̂(t)dt−D(t)dt

K (t) = P (t)C (t)′

X̂(t0) = x̄ (t0)

Ṗ (t) = A (t)P (t) + P (t)A (t)′ + F (t)Σs (t)F (t)′

−K (t) Σo (t)
−1K (t)′

P (t0) = P̄ (t0)

2.3.4 The likelihood functional

We now consider the parameter estimation problem, where the system
is time-invariant; that is, A(t), B(t), F (t), C(t), D(t) are all constants.
Suppose the set of observations {Y (s), 0 ≤ s ≤ T} are available for the
purpose of parameter estimation. In addition to the assumption that
Y (t) satisfies the measurement equation (2.14) and the non observed
factors X (t) satisfies the state equation (2.13), we also assume that
Σo > 0 and is known completely. Without loss of generality we can

assume that Σo = Im. (Simply redefine Y by
(√

Σo

)−1
Y ). In this

case, a likelihood function can be defined if we find a fixed measure
on C = C([0, T ] ;Rm), (the space of continuous functions from [0, T ]
into Rm) such that the measure induced on C by the observation
process Y (t), 0 ≤ t ≤ T , denoted by pY is absolutely continuous with
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respect to that fixed measure. If we use pW o, the measure induced
by the process W o(t), 0 ≤ t ≤ T , on C as the fixed measure, we can
define the likelihood functional as the corresponding Radon-Nikodym
derivative evaluated at the sample trajectory of the observation. In
this case, the likelihood functional is given by, see Balakrishnan (1973)
and Bagchi (1975) for more details,

L (Y (·); θ) = exp




−1

2

T∫

0

∥∥∥CX̂ (t) +D
∥∥∥
2

dt

−
T∫

0

〈
CX̂ (t) +D, dY (t)

〉


 (2.16)

where θ denotes the vector containing all unknown parameters
that describe the dynamics of the system. The bracket term denotes
an inner product 〈a, b〉 = a′b for a, b ∈ Rm and ‖a‖2 = 〈a, a〉. where

X̂ (t) = E
[
X (t) |FY

t

]

The estimate of the unknown vector θ can be found by maximizing
the likelihood functional (2.16); or equivalently, its logarithm, that is,

θ̂ = argmax
θ

L (θ)

2.4 Particle Filtering

Kalman filter is based on the assumption of linear model and Gaussian
disturbance, so that at every time step the states and observations
are Gaussian. In many real world applications, these assumptions
cannot be expected to hold. Other, sub-optimal filters have therefore
been developed to deal with non-linear functions and non-Gaussian
disturbances. Particle filter is one such sub-optimal filter which is
widely used these days.
In the Bayesian framework, all relevant information about Xk ≡
{X0, . . .Xk} given observation Yk ≡ {Y1, . . . Yk} up to and including
time k can be obtained from the posterior probability density function
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pXk |Yk
(xk|yk) ≡ p (xk|yk). In real applications we are mainly inter-

ested in estimating recursively in time the filtering density given by
pXk|Yk

(xk|yk) ≡ p (xk|yk). From this density one can get any filtered
point estimates such as the posterior mode or mean of the state. The
recursive filter consists of two steps of prediction and updating. Fol-
lowing Ristic et al. (2004) and Bølviken and Storvik (2001), consider
the following general discrete state-space model given by

Xk = f(Xk−1,Wk) (2.17)

Yk = h(Xk, Vk) (2.18)

where Xk is the unobservable system equation, taking values in Rn

with initial (prior) density p (x0) ≡ p(x0|y0). Yk is the measurements
process, taking value in Rm. The process noises Wk, k = 1, 2, · · · are
assumed to be independent, so are the measurement noises Vk, k =
1, 2, · · · Furthermore, Wk is assumed to be independent of Vk. f(x, w)
and h(x, v) are functions of (x, w) and (x, v), respectively, where both
can be nonlinear. In this model, we assume that the probability den-
sity functions for Wk and Vk are known.
The above model can also be characterized in terms of its proba-
bilistic description via the state transition density p (xk|xk−1) and the
observation density p (yk|xk). This follows from the fact that Xk is
a Markov process, i.e. the conditional density of Xk given the past
state Xk−1, depends only on Xk−1, and, the conditional density of Yk
given the state Xk and the past observations Yk−1, depends only on
Xk. Then, in principle, the filtered density p (xk|yk) may be obtained
recursively in two stages: prediction and update.
Suppose that the filtered density p(xk−1|yk−1) at time k − 1, termed
the prior, is available. The prediction stage involves using the system
equation (2.17) to obtain the prior pdf of the state at time k via the
Chapman-Kolmogorov equation given by

p(xk|yk−1) =

∫
p(xk|xk−1)p(xk−1|yk−1)dxk−1 (2.19)

At time step k, a measurement yk becomes available, and it can be
used to update the prior via Bayes’ rule, that is

p(xk|yk) =
p(yk|xk)p(xk|yk−1)

p(yk|yk−1)
(2.20)
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where the normalized constant

p(yk|yk−1) =

∫
p(yk|xk)p(xk|yk−1)dxk (2.21)

depends on the likelihood function p(yk|xk). In the update stage
(2.20), the measurement yk is used to modify the prior density to get
the required posterior density p(xk|yk) of the current state at time
k. Thus, starting from the initial density p (x0) one can, at least in
principle, recursively arrive at the desired density p (xk|yk).

However, it is not possible, in general, to derive optimal closed-
form estimations of the state and we must adopt numerical strategies.
Particle filter is precisely used for that purpose, where a sequential
Monte Carlo method is used to represent the required posterior den-
sity function. This occurs through discrete approximations to the
exact posterior distributions. Let p̂(xt|yt) be some discrete analogue

to the exact density p(xt|yt). The points x
(i)
t on which p̂(xt) assigns

positive probabilities are known as the particles. Their numbers Nk

may vary. Suppose a reasonable approximation p̂(xk−1|yk−1) is avail-
able at time k − 1. When inserted for the exact density p(xk−1|yk−1)
on the right in (2.19), we obtain

p̂(xk|yk−1) =

Nk−1∑

i=1

p(xk|x(i)k−1)p̂(x
(i)
k−1|yk−1) (2.22)

The main point of the design is to ensure a good approximation to the
exact predictive density p(xk|yk−1). When (2.22) replaces its exact
counterpart in (2.20), and we get as an approximate update density

p̃(xk|yk) =
p(yk|xk)p̂(xk|yk−1)

p̂(yk|yk−1)
(2.23)

where the normalized constant p̂(yk|yk−1) is a discrete approximation
of (2.21). To complete the recursion, (2.23) must be replaced by a
particle approximation p̂(xt|yk). The form of this approximation can
be represented as:

p(xk|yk) ≈
Ns∑

i=1

wi
kδ(x− xik) (2.24)
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where it can be shown that as Ns → ∞, the approximation (2.24),
approaches the true posterior density p(xk|yk).

Particle filtering has different forms and methods, one important
method which represents the basis for most sequential Monte Carlo
filters developed over the past decades, is the Sequential Importance
Sampling (SIS) algorithm. Using this algorithm, it can be shown that
the weight corresponding to each particle i denoted by wi

k satisfies
the following recursive relation, see Arulampalam et al. (2002) for the
details,

wi
k = wi

k−1

p(yk|xik)p(xik|xik−1)

q(xik|xik−1,yk)
(2.25)

where q(·) represents a proposal density (importance function). Ide-
ally, the proposal density should be the posterior density itself p(xk|yk),
but this quantity is unknown (it is what we are looking for). A pseudo-
code description of the SIS algorithm is given by algorithm 1.

Algorithm 1. SIS PARTICLE FILTER
[
{xik, wi

k}
Ns

i=1

]
= SIS

[{
xik−1, w

i
k−1

}Ns

i=1
, yk

]

• FOR i = 1 : Ns

– Draw xik ∼ q
(
xk|xik−1, yk

)

– Assign the particle a weight, wi
k, according to (2.25)

• END FOR

Although the SIS particle filter is easy to implement, there is a
common problem known as the degeneracy phenomenon. It means
that after a few iterations, most weights will be carried by few par-
ticles and the algorithm fails to represent the posterior density. This
problem can be partially tackled using two methods: The first is a
good choice of importance density, and the second is the use of a
new step within the SIS algorithm called resampling. For the first
method, it has been shown by Doucet et al. (2000), that the optimal
importance density function which minimizes the variance of the true
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weights, w∗i
k , conditioned upon xik−1 and yk is given by

q
(
xk|xik−1, yk

)
opt

= p
(
xk|xik−1, yk

)

=
p
(
yk|xk, xik−1

)
p
(
xk|xik−1

)

p
(
yk|xik−1

) (2.26)

Substituting this optimal importance density in (2.25), we get

wi
k ∝ wi

kp
(
yk|xik−1

)

= wi
k−1

∫
p (yk|x′k) p

(
x′k|xik−1

)
dx′k (2.27)

However, this optimal importance density suffers from two major
drawbacks. The first is to be able to sample from p

(
xk|xik−1, yk

)

and the second is the evaluation of the integral in (2.27). We now
consider the second method of using the resampling step by which
the degeneracy problem can be reduced. The basic idea of the resam-
pling method is to eliminate particles which have small weights and
to concentrate on particles with large weights. It involves generating

a new set {xik}
Ns

i=1 by resampling with replacement Ns times from an
approximate discrete representation of p (xk|yk) given by

p (xk|yk) ≈
Ns∑

i=1

wi
kδ
(
xk − xik

)
(2.28)

so that Pr
(
xi∗k = xjk

)
= wj

k. The resulting sample is an i.i.d sam-
ple from the discrete density (2.28), and so the weights are reset
to wi

k = 1
Ns

. However, although the resampling step reduces the ef-
fects of the degeneracy problem, it introduces other practical problem
known as sample impoverishment, in which the particles which have
high weights are statistically selected many times, leading to a loss
of diversity among the particles. Methods to counter these problems
have led to many variants of particle filter algorithms, such as sample
importance resampling (SIR), auxiliary sampling importance resam-
pling (ASIR), regularized particle filter (RPF). However, it can be
introduced within a generic framework of the sequential importance
sampling (SIS). Following Arulampalam et al. (2002), a generic par-
ticle filter can be described by algorithm 2:
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Algorithm 2. GENERIC PARTICLE FILTER
[
{xik, wi

k}
Ns

i=1

]
= PF

[{
xik−1, w

i
k−1

}Ns

i=1
, yk

]

• FOR i = 1 : Ns

– Draw xik ∼ q
(
xk|xik−1, yk

)

– Assign the particle a weight, wi
k, according to (2.25)

• END FOR

• Calculate total weights: t = SUM
[
{wi

k}
Ns

i=1

]

• For i = 1 : Ns:

– Normalize: wi
k =

wi
k

t

• END FOR

• Calculate what is called the effective number of particles as
Neff = 1

N
∑

i=1

(

ŵ
(i)
k

)2

• IF Neff < Nthr, where Nthr is a given threshold, then do resam-
pling

– resample from
(
x
(i)
k

)N
i=1

with probabilities
(
ŵ

(i)
k

)N
i=1

to get

a new set of particles

– put
(
w

(i)
k

)N
i=1

= 1
N

• END IF

2.5 Infinite Dimensional Filter

2.5.1 Infinite dimensional Brownian motion

In term structure modeling, as in modeling the futures prices of elec-
tricity, the state is a function of two variables; t (the time) and x (the
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time to maturity). For stochastic modeling, it is then natural to in-
troduce two-parameter Brownian motion w(t, x). One way of defining
this is to consider w(t, x) to be a stochastic process in t with values
in the space of functions of x. If these functions are in a (separa-
ble) Hilbert space, we may think of w(t, x) as a Hilbert space valued
stochastic process in t.

For simplicity we set the Hilbert space H = L2(0, T̂ ). Hence we

can choose the orthogonal sequence {ek} in L2(0, T̂ ) as

ek(x) = sin(πk
x

T̂
),

i.e., for any function g ∈ L2(0, T̂ ) we have

g(x) =

∞∑

k=1

gkek(x),

where

gk =

∫ T̂

0

g(x)ek(x)dx = (g, ek).

Furthermore g ∈ L2(0, T̂ ) implies
∞∑

k=1

g2k <∞. (2.29)

The two parameter Brownian motion w(t, x) is formulated to fol-
low the above procedure. We assume that for each t, w(t, x) is in

L2(0, T̂ ), i.e.,

w(t, x) =
∞∑

k=1

βk(t)ek(x),

where

βk(t) = (w(t, x), ek(x)) =

∫ T̂

0

w(t, x)ek(x)dx.

Now we set {βk(t)} are set as the mutually independent Brownian
motion processes in R1:

E{βk(t)} = 0, E{βk(t)βℓ(t)} = 0 for k 6= ℓ

E{β2
k(t)} = λkt. (2.30)
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To support the square integrability for w(t, x) with respect to x we
need to set

∞∑

k=1

λk <∞.

This implies that

E{
∫ T̂

0

w2(t, x)dx} =

∫ T̂

0

E{(
∞∑

k=1

βk(t)ek(x))
2}dx

=

∫ T̂

0

∞∑

k=1

E{β2
k(t)}e2k(x)dx

=

∞∑

k=1

λk

∫ T̂

0

e2k(x)dxt

= t
∞∑

k=1

λk <∞.

It is also easy to see that ∀φ1, φ2 ∈ L2(0, T̂ )

E{
∫ T̂

0

w(t, x)φ1(x)

∫ T̂

0

w(t, y)φ2(y)dxdy}

=

∫ T̂

0

∫ T̂

0

φ1(x)E{w(t, x)w(t, y)}φ2(y)dxdy

=

∫ T̂

0

∫ T̂

0

φ1(x)
∞∑

k=1

∞∑

j=1

E{βk(t)βj(t)}ek(x)ej(y)φ2(y)dxdy

from (2.30)

=

∫ T̂

0

∫ T̂

0

φ1(x)

∞∑

k=1

λkek(x)ek(y)φ2(y)dxdyt

= (φ1, Qφ2)t,

where

Q =

∫ T̂

0

∞∑

k=1

λkek(x)ek(y)(·)dy.
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Hence the operatorQ is called the covariance operator of the H-valued
Brownian motion w(t, x) and it turns out to be a trace-class operator:

Tr{Q} =

∫ T̂

0

∞∑

k=1

λkek(x)ek(x)dx =
∞∑

k=1

λk <∞.

Intuitively
∑∞

k=1 λkek(x)ek(y) denotes the covariance kernel q(x, y)
which satisfies

E{w(t, x)w(t, y)} = q(x, y)t.

If we set
λk = 1, for all k,

the kernel q(x, y) = δ(x−y). In this case, w(t, x) has no correlation for
the spatial variable, i.e. w(t, x) is a white noise in x. This situation,
of course, is ruled out if we assume that the

∑∞
k=1 λk <∞.

2.5.2 Infinite dimensional Kalman filter

Following Bagchi and Borkar (1984), we consider an integral abstract
signal process

X(t) =

∫ t

0

St−sDdw(s), t ≥ 0 (2.31)

and the observation equation

Y (t) =

∫ t

0

CX(s)ds+ FW o(t) (2.32)

where St, t ≥ 0, is a strongly continuous semigroup with generator
A on a separable Hilbert space H ; w(t) is a Brownian motion on
a separable Hilbert space K and has incremental covariance W , see
Curtain and Pritchard (1978) for details. D ∈ L(K,H), W o(t) is a
vector valued Brownian motion on Rq and has incremental covariance
matrix V ; V , V −1, F , F−1 ∈ L(Rq); C ∈ L(H,Rq) and w,W o are
mutually independent, L(A,B) stands for the class of all bounded
linear operators from A into B).

We denote by X̂(t) the filtered estimate of X(t) based on Y (s), 0 ≤
s ≤ t. Then

X̂(t) =

∫ t

0

St−sP (t)C
∗dν(s) (2.33)
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where ν(t), the so-called innovations process is defined by

ν(t) = Y (t)−
∫ t

0

Cx̂(s)ds (2.34)

and P (t) is the unique solution of the functional Riccati differential
equation

d

dt
〈P (t)h, k〉 = 〈P (t)h,A∗k〉+ 〈A∗h, P (t)k〉

+〈DWD∗h, k〉 − 〈P (t)C∗CP (t)h, k〉;
h, k ∈ D(A∗)

(2.35)

where 〈·, ·〉 denotes inner product in H andD(A∗) denotes the domain
of the unbounded operator A∗.
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Chapter 3

Parameter Estimation of
Two Factor Model of
Schwartz-Smith Using
Particle Filter

3.1 Introduction

In the finance literature, two main approaches for modeling com-
modity price dynamics stand out. The first approach starts with
the explicit modeling of the spot price dynamics, from which for-
ward price dynamics can be constructed; see for example Schwartz
(1997) and Schwartz and Smith (2000). The other approach uses
the arbitrage-free framework of Heath et al. (1992) (HJM), which de-
scribes the forward price dynamics directly using explicit volatility
functions. Examples of application of such framework to commodity
price modeling are Jamshidian (1991) and Clewlow and Strickland
(1999a,b).

However, in the empirical implementation of either of the above
approaches, one of the main difficulties is the estimation of the pa-
rameters of the model. The estimation problem becomes even more
difficult because some factors of these models are not directly observ-
able. For instance, the spot price is proxied with the forward/futures
price with the closest time to maturity, which can go as far as one
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month in the case of coal1. In the case of convenience yield mod-
els like in Gibson and Schwartz (1990), the convenience yield cannot
be observed. Another difficulty stems from the fact that the prices
themselves contain some observation noise attributed to the lack of
liquidity or high bid-ask spread. For these issues, many recent pa-
pers like Schwartz and Smith (2000), Elliott and Hyndman (2007),
Manoliu and Tompaidis (2002) and Geman and Roncoroni (2006) use
a filtering approach as a better alternative to estimate parameters.
In this chapter, we illustrate the use of filtering in the energy mar-
ket, both by Kalman filtering and particle filtering techniques. We
consider the problem of estimating the parameter of the two factor
model of Schwartz and Smith (2000), which is a popular model in the
commodity market. However, to extend the model to be suited to
the energy market, we need to deal with the delivery period of the
futures contract.
In this respect, our first contribution to the literature is to get an
expression for the futures price that takes into account the delivery
period of the contract. For that we use the the geometric approxima-
tion in continuous time to the payoff structure of the contract. As a
result, we can be able to express the model in state space form, and
once it is cast in a state space form, the Kalman filter can be applied
to estimate the unobservable state variables and the parameters of
the model. However, since we are dealing with many parameters, a
sensitivity analysis of the use of MLE method shows that it is hard
to find reliable estimates of the parameters. In this regard, our ap-
proach resembles the contribution of Kholopova (2006) in her thesis.
The only difference is that we adopt the continuous version of the
geometric average of the payoff instead of the discrete one.
In the second part of the chapter is our second contribution, which is
to avoid the use of any approximation to the futures prices (observa-
tion equation). In this case we are dealing with a nonlinear system, so
we use the particle filtering methodology to estimate the states and
the parameters of the system. Finally, we present a simulation study
that shows the result of the filter.

1Through the text, we use the term futures or forward to represent the same contract,

since we assume that the interest rate is constant, both products will have the same price.
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MODEL OF SCHWARTZ-SMITH USING PARTICLE FILTER

3.2 Review of Schwartz and Smith (SS) Model

We consider a complete filtered probability space (Ω,F ,P,F) with a
filtration F = (Ft)t≥0 where Ft represents the information available
at time t. We assume that this space satisfies the ”usual conditions”,
see Oksendal (2003). For any process X (t) , we use the notation
Et [X (T )] to denote E (X (T ) |Ft) for the expectation conditional on
filtration Ft.

Let us denote by S (t) the spot price of electricity at time t. As
in (Schwartz and Smith, 2000) we decompose spot prices into two
stochastic factors as

lnS (t) = χ (t) + ξ (t) + h(t) (3.1)

where χ (t) will be referred to as the short-term deviation in price,
ξ (t) is the equilibrium price level and h(t) is a deterministic function.
The short-term deviations χ (t) are assumed to revert toward zero
following an Ornstein-Uhlenbeck process

dχ (t) = −κχ (t) dt+ σ1dWχ (t) (3.2)

and the equilibrium level ξ (t) is assumed to follow a Brownian motion
process given by

dξ (t) = µξdt+ σ2dWξ (t) (3.3)

where under the real probability measure denoted by P, the two Brow-
nian motion are correlated with ρdt = dWχ (t) dWξ (t). Spot price
process is adapted to the filtration F. In integral form, (3.2) and
(3.3) are given by

χ(t) = e−κ(t−t0)χ (t0) + σ1

t∫

t0

e−κ(t−u)dWχ (u) (3.4)

and

ξ(t) = ξ (t0) + µξ(t− t0) + σ2

t∫

t0

dWξ (u) (3.5)

For the valuation of futures, we need to represent the model under
the risk neutral measure denoted by Q. Assuming a constant market
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prices of risk for both processes χ (t) and ξ (t) denoted by λχ and
λξ respectively, we get the following dynamics of both under the risk
neutral measure

dχ (t) = (−κχ (t)− λχ) dt+ σ1dW
∗
χ (t) (3.6)

and

dξ(t) = (µξ − λξ) dt+ σ2dW
∗
ξ (t) (3.7)

where W ∗
χ and W ∗

ξ are correlated standard Brownian motions under
Q, and dW ∗

χdW
∗
ξ = ρdt. Denote the current time by t, the time of

maturity of the futures by T , the time to maturity τ where τ = T − t,
and by T ∗ a fixed time horizon where t0 ≤ t ≤ T < T ∗. The spot
price is still given by

lnS (t) = χ (t) + ξ (t) + h(t) (3.8)

similar to (3.1), but its dynamics under Q take into account the dy-
namics of the underlying factors under Q given by (3.6) and (3.7).

We know that the futures price denoted by F (t, T ), is given by

Et [S (T )], see Musiela and Rutkowski (1997). Hence, to get this
expectation, we express (3.6) and (3.7) in integral form and get

χ(t) = −λχ
κ

+ e−κ(t−t0)

(
χ (t0) +

λχ
κ

)
+ σ1

t∫

t0

e−κ(t−u)dW ∗
χ (u) (3.9)

ξ(t) = ξ (t0) + (µξ − λξ) (t− t0) + σ2

t∫

t0

dW ∗
ξ (u) (3.10)

Substituting (3.9) and (3.10) in (3.8), we get
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ln(S(t)) = −λχ
κ

+ e−κ(t−t0)

(
χ (t0) +

λχ
κ

)
+ σ1

t∫

t0

e−κ(t−u)dW ∗
χ (u)

(3.11)

+ ξ (t0) + (µξ − λξ) (t− t0) + σ2

t∫

t0

dW ∗
ξ (u) + h(t).

Hence, ln (S (T )) is a normal random variable with mean and vari-
ance given by

Et [ln (S (T ))] = −λχ
κ

+ e−κ(T−t)

(
χ (t) +

λχ
κ

)
(3.12)

+ ξ (t) + (µξ − λξ) (T − t) + h(T )

and

Vart [ln (S (T ))] =
σ2
1

2κ

(
1− e−2κ(T−t)

)
+ σ2

2 (T − t)

+
2ρσ1σ2
κ

(
1− e−κ(T−t)

)
(3.13)

where Et and Vart represent the expectation and variance at time
T under the risk-neutral measure Q, conditional on the information
available at earlier time t. Using (3.12), and (3.13), we get,

F (t, T ) = Et (S (T )) = exp

(
Et [lnS (T )] +

1

2
Vart [lnS (T )]

)

(3.14)
which can be written as

F (t, T ) = exp
(
e−κ(T−t)χ (t) + ξ (t) + A(t, T )

)
(3.15)

where

A(t, T ) =
[
λχ

κ

(
e−κ(T−t) − 1

)]
+ (T − t) (µξ − λξ)

+1
2
Vart [ln (S (T ))] + h(T )

(3.16)

The logarithm of the futures price, using (3.15) is given as

lnF (t, T ) = e−κ(T−t)χ (t) + ξ (t) + A(t, T ) (3.17)
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3.3 Extension of The Model to Delivery Period

In the electricity market, the market prices of electricity futures are
different than the standard futures traded in other markets, such as
futures on interest rates or futures on bonds. In the electricity market,
the futures prices are based on the arithmetic averages of the spot
prices over the delivery period [T0, T ], given by

1

T − T0

T∫

T0

S (η) dη (3.18)

Now, for t < T , the futures price is given by

F (t, T0, T ) = E





1

T − T0

T∫

T0

S (η) dη| Ft



 (3.19)

where Ft = σ {S (η) ; 0 ≤ η ≤ t}. Assume that S (t) ∈ L2 (T0, T ) ∀t ∈
[T0, T ] and using the linearity of the expectation operator, see (Benth
et al., 2008). Then (3.19) can be represented as

F (t, T0, T ) =
1

T − T0

T∫

T0

Et [S (η)] dη (3.20)

and using the definition of the futures price, (3.20) can be written
as

F (t, T0, T ) =
1

T − T0

T∫

T0

F (t, η) dη (3.21)

Hence, (3.20) using (3.15) is given by

F (t, T0, T ) =
1

T − T0

T∫

T0

exp[e−κ(η−t)χ (t) + ξ (t) + A (t, η)]dη (3.22)

The integrand represents a lognormal random variable because it rep-
resents the exponential of the sum of two normal random variables.
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However, the integral itself which represents the futures price is clearly
not lognormal, as the sum of lognormal random variables is not log-
normal. To treat this system, one way is to approximate the above
lognormality by a Gaussian system using the geometric approxima-
tion. This will be stated in the next section. Another way to treat
this nonlinear system is to use the nonlinear filtering theory with the
particle filter. The application of the particle filter is shown in the
last section of this chapter.

3.4 Observation Mechanism

As the given data of the observations is available in daily basis and
already transformed such that the time-to-delivery τi = T i

0− t is fixed
as a constant through time for each future i. Hence, we need to make
adjustments for the futures price using the time to delivery τi = T i

0−t
instead of the time of delivery T i

0. This means that, for each t, T i
0 − t

is set as a constant time period τi for i = 1, · · ·, m where m is the
number of futures available. Moreover, the delivery period T −T0 = θ
(1-month) is set as a constant for all the futures.
So, before deriving our observation mechanism, we rewrite the futures
price given by (3.22) by using the time-to-delivery variable x = T − t:

F (t, T0, T ) =
1

T − T0

T−t∫

T0−t

g(t, x)dx, (3.23)

where

g(t, x) = exp{f(t, x)},

f(t, x) = A(t, x) + e−κxχ(t) + ξ(t)

and

A(t, x) =
λχ
κ
(e−κx − 1) + (λξ − µχ)x+ h(x+ t)

+
1

2
{σ

2
χ

2κ
(1− e−2κx) + σ2

ξx+ 2
ρσξσχ
κ

(1− e−κx)} (3.24)
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where h(x + t) is a seasonality function identified in Chapter 1. In
practice we observe the fixed time-to-delivery futures prices;

F̄ (t, τi + t, τi + t + θ) =
1

θ

τi+θ∫

τi

g(t, x)dx (3.25)

for θ = T − T0 and τ1 < τ2 < · · · < τn. Hence we observe the market
data F̄ (t, τi + t, τi + t+ θ) for i = 1, 2, · · · , m. This equation exhibits
the heavy nonlinearity for χ and ξ.

3.5 Geometric Average Approximation

To find an analytical expression for the futures price, we consider the
continuous time geometric average approximation to equation (3.25).
The geometric average in the continuous form becomes

1

θ

τi+θ∫

τi

g(t, x)dx ≈ exp{1
θ

τi+θ∫

τi

log{g(t, x)}dx

= exp{1
θ

τi+θ∫

τi

f(t, x)dx}

= exp

[
e−κτi − e−κ(τi+θ)

κθ
χ (t) + ξ (t) + Ã (t, τi; θ)

]
, (3.26)

where

Ã (t, τi; θ) =
1

θ

τi+θ∫

τi

A(t, x)dx. (3.27)

Hence the geometric approximation of the logarithm of the observa-
tion becomes

y(t, τi; θ) =
e−κτi − e−κ(τi+θ)

κθ
χ (t) + ξ (t) + Ã (t, τi; θ)

for i = 1, 2, · · · , m. (3.28)
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3.5.1 Filtering equations

The transition system is represented using the two unobservable fac-
tors χ (t) and ξ (t) given by equations (3.4) and (3.5). Having charac-
terized the state and observation equations, we formulate these equa-
tions in a state-space so that we can calculate the likelihood function.
For this we need to introduce a noise term in the observation equation.
This is often justified by the transaction costs and bid ask spread in
the prices. For that, we proceed by a discretization to the transition
system. Thus, let the time points be given by tk = k T

N
, k = 1, · · ·, N

and let ∆t = tk − tk−1 is the time step, and where N is the number of
time periods in the data set. Then we use the following substitutions

dX (tk) ∼= X (tk)−X (tk−1) (3.29)

dt ∼= ∆t

Hence, The transition system, can be written as

Xk+1 = AXk + Uk +Wk, k = 1, 2, · · ·, N (3.30)

where Xk :=

[
χ (tk)
ξ (tk)

]

2×1

A :=

[
e−κ∆t 0
0 1

]

2×2

U :=

[
0

µξ∆t

]

2×1

Wk :=

[
∆Wχ (tk)
∆Wξ (tk)

]

2×1

(3.31)

and

∆Wk ∼ N (ms,Σs)
ms = E (∆Wk)

′ =
[
0 0

]
1×2

Σs = Cov (∆Wk) = E
(
∆Wk∆W

′

k

)

=

[ (
1− e−2κ∆t

) σ2
1

2κ

(
1− e−κ∆t

)
ρσ1σ2

κ(
1− e−κ∆t

)
ρσ1σ2

κ
σ2
2∆t

]

2×2

(3.32)
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For the measurement equation, we use a sequence ofm futures f1, f2, ··
·, fm with time to delivery τ1, τ2, · · ·, τm, respectively. From equation
(3.28), adding the noise term mentioned above, we get

Yk = dk + CXk + ηk, k = 1, 2, · · ·, N (3.33)

where

Yk :=




lnF (tk, τ1 + tk; θ)
·
·

lnF (tk, τm + tk; θ)




m×1

, Xk :=

[
x1 (tk)
x2 (tk)

]

2×1

dk :=




Ã (tk, τ1)
·
·

Ã (tk, τm)




m×1

(3.34)

where Ã (tk, τi) is given in (3.27) and

C :=




e−κτ1−e−κ(τ1+θ)

κθ
1

· ·
· ·

e−κτm−e−κ(τm+θ)

κθ
1




m×2

(3.35)

and where the measurement noise ηk ∼ N (mo,Σo),

mo = E (ηk)
′ =
[
0 · · 0

]
1×m

Σo = Cov [(ηk)] = E
(
ηkη

′

k

)
= R

where R = σǫIm is a constant diagonal matrix of size m

The specifications of the state space system is completed by introduc-
ing further assumptions:
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1. The initial state space vector Xt0 = (χ (t0) , ξ (t0))
′ has a mean

of x̂0 and a covariance matrix P0

E (Xt0) = x̂0

Var (Xt0) = P0

2. The distributions of ∆Wk and ηk are uncorrelated with the initial
state, i.e.

E
(
∆WkX

′
t0

)
= 0 for k = 1, · · ·, N

E
(
ηkX

′
t0

)
= 0 for k = 1, · · ·, N

3.5.2 Likelihood function

Now we are in a position to calculate the likelihood function as ex-
plained in Section 2.3.2 of Chapter 2. The log-likelihood function is
given as

lnL (yN , ψ) =

N∑

k=1

ln (p (yk, ψ|Yk−1)) (3.36)

= −nN
2

ln 2π − 1

2

N∑

k=1

ln |detQk| −
1

2

N∑

k=1

ω′
kQ

−1
k ωk

where

ωk = Yk − ȳk, k = 1, · · ·, N
ȳk = CkX̂k|k−1 + dk

Qk = CkPk|k−1C
′
k + Σ0

3.6 Sensitivity Analysis to The MLE

Our aim in this section is to examine the sensitivity of changing the
covariance of the observation noise and changing the parameters, on
the corresponding changing value of the maximum Likelihood func-
tion. For that we need to simulate the data first.
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3.6.1 The generation of data for simulation

We set the parameters for simulation as follows which are denoted by
the true parameters given by,

κ=1.321 λχ= 0.623 σ1 = 0.7 µξ = .1
λξ = 0.1 σ2 = 0.3 ρ=0.6

Also, we consider two values for the standard deviation ”square root
of the covariance” of the artificial observation noise,

σǫ = 0.01 and σǫ = 0.05.

To simplify our simulations, we only generate the observation data
from a model where seasonality and linear trend are removed com-
pletely. In other words, we assume that the deterministic component
of the spot price model given by the function h(t) has been found as
discussed in Chapter 1. Figure 3.1 show the result of the generated
term structure of futures when σǫ = 0.01, while Figure 3.2 show the
term structure when the σǫ = 0.05
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Figure 3.1: Simulated y(t, τi) with σǫ = 0.01
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Figure 3.2: Simulated y(t, τi) with σǫ = 0.05

3.6.2 The effect of the parameters on the MLE

To check the effect of the change of the parameters values on the ML
function, we assume that the parameters are given in the following
range, summarized in Table 3.1.

Parameter Lower bound Upper bound

κ 0.01 10
λχ 1.2 3
σ1 0.3 1
µξ 0.1 2
λξ 0.5 2
σ2 0.1 .1
ρ -0.9 0.9

Table 3.1: Lower and upper bounds for all parameters

Now we consider five different parameters and the resulting corre-
sponding values of its ML function. These five cases for the parame-
ters are chosen as follows:
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Case 1 = Lower bound
Case 2 = Lower bound + 0.01
Case 3 = True value
Case 4 = Upper bound - 0.01
Case 5 = Upper bound

Considering two different cases for σǫ, the values of the correspond-
ing log-likelihood function are shown in Figure 3.3,
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Figure 3.3: Change of log-likelihood around σǫ = 0.01 (left) and 0.05
(right)

From these figures, we find that whenever the value of the artifi-
cial noise becomes bigger, the value of log-likelihood becomes small.
Furthermore the MLE seems to have a global maximum at the true
value of the parameters.
Now we slightly perturbed each of the parameters, keeping all the
other ones fixed, and get the corresponding ML values. The result of
this analysis is shown in the following figures.
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Figure 3.9: Log likelihood for changing σ2
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Figure 3.10: Log likelihood for changing ρ
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Figure 3.11: Log likelihood for changing σǫ, keeping the other parameters
fixed to their true values, (left: σǫ = 0.01, right: σǫ = 0.05).

Now from above figures, we find that the precise estimates for the
unknown parameters using the MLE method will be difficult when
using the usual optimization algorithm with the gradient method.
Notice that the values of likelihood with respect to the unknown pa-
rameters do not change, and the plot is almost flat. One possible
option to get the parameters is to apply the Genetic Algorithm Tool-
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box GA in MATLAB. This will be performed in Chapter 4 when
dealing with the infinite dimensional system. At this stage, we need
to recognize that the last figure above implies that it will be hard to
identify the artificially added noise covariance, because the likelihood
function is also monotone with respect to σǫ. In the next Chapter, a
new modeling approach is proposed where the artificial noise is build
in within the model and it is not exogenously imposed to the obser-
vation equation.

3.7 The Arithmetic Average Case

In this section, our aim is to avoid the use of any approximation to
the payoff of the futures. For that, we propose the use of particle
filtering algorithm as a method for parameter estimation. Hence, our
futures price will be given by its non-linear form,

yi(tj) ≡ y(tj, τi; θ) = F̄ (tj, τi + tj, τi + tj + θ), (3.37)

where

F̄ (tj, τi + tj , τi + tj + θ) =
1

θ

∫ τi+θ

τi

g(tj, x)dx.

Now, we assume that the observation is changed as a result of,
for example, bid-ask spread to F̄ . So, we impose extra noise term
affecting the original observation. As a result, the observation will be
given by

yi(tj) = F̄ (tj, τi + tj, τi + tj + θ) exp(ǫj) (3.38)

where ǫj is a zero mean Gaussian white noise with

E{ǫjǫk} = σ2
ǫ δjk.

Now the log price ỹi(tj) = log yi(tj) becomes

ỹi(tj) = log F̄ (tj , τi + tj , τi + tj + θ) + ǫj .
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3.8 The Discrete Version of Models

Now we present the discrete version of our system model and we also
reset λξ = λξ − µξ. We set

t0 < t1 < · · · < tn, for ∆t = tj+1 − tj .

Hence

χj+1 = χj + (−κχj − λχ)∆t+ σχ∆Wχj (3.39)

ξj+1 = ξj + λξ∆tσξ +∆Wξj. (3.40)

The observation mechanism is given by

ỹℓ(tj) = log

[
1

θ

∫ τℓ+θ

τℓ

exp{A(tj, x) + e−κxχj + ξj}dx
]
+ ǫj , (3.41)

for ℓ = 1, 2, · · · , m. We set

Ỹj = [ỹℓ(tj)]m×1 (3.42)

3.9 Particle Filter Algorithm

It is again possible to identify the system parameters by using the
maximum likelihood method. Here noting that the particle filter
works for the nonlinear systems, we estimate our parameters by aug-
menting the unknown parameters with the state of the system. Sup-
pose that the parameters

Θ = [κ, λχ, σχ, λξ, σξ, ρ];

are random variables with uniform distributions with known bounds,
and consider the augmented system state variable (χ, ξ,Θ) with

χ(0) ∈ N(m1, σ1), ξ(0) ∈ N(m2, σ2),

where m1, σ1, m2, σ2 are known. Now our generating algorithm for
the particle filter is as follows:
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• Generate NS particles: for i = 1, 2, · · · , NS
χ(i)(0) ∈ N(m1, σ1) and ξ

(i)(0) ∈ N(m2, σ2)

and
Θ(i) ∈ Some uniform distribution.

• Generate the system states χ
(i)
j , ξ

(i)
j from (3.39) and (3.40).

• Calculate

h(j, i) =

[
log[

1

θ

∫ τk+θ

τk

exp{A(tj, x) + e−κxχ
(i)
j + ξ

(i)
j }dx]

]

m×1

for i = 1, 2, · · · , NS
• Get the likelihood;

p(Ỹj|χ(i)
j , ξ

(i)
j ,Θ(i)) =

1√
2πσ2

ǫ

exp{− 1

2σ2
ǫ

||Ỹj − h(j, i)||2}

for i = 1, 2, · · · , NS .

• Updated weight w
(i)
j is obtained for W0 = [1/NS]NS×1,

w
(i)
j = w

(i)
j−1p(Ỹj|χ(i)

j , ξ
(i)
j ,Θ

(i)).

• Normalize
ŵ

(i)
j =

wj∑NS
i=1w

(i)
j

.

• Get the conditional probability densities;

p(χj |Ỹj) =
NS∑

i=1

ŵ
(i)
j δ(χj − χ(i)), (3.43)

p(ξj|Ỹj) =
NS∑

i=1

ŵ
(i)
j δ(ξj − ξ

(i)
j ), (3.44)

p(Θ|Ỹj) =
NS∑

i=1

ŵ
(i)
j δ(Θ−Θ

(i)
j ). (3.45)

• We use the systematic resampling procedure, if we need.
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3.10 Simulation Studies

For the simulation study, we set the initial conditions and system
parameters as

[χ(0) ξ(0)] = [0.02 0.5]

[κ λχ σχ λξ σξ ρ σǫ] = [1.321 0.623 0.2 0.01 0.2 0.6 0.1]

and the the seasonality function h(t) is assumed to be known and
given by

h(t) = 2(27.9 sin(2πt) + 40 cos(2πt)

+ 13.9 sin(4πt)) + 11.5 cos(4πt))/251 + 0.27t+ 3.04.

We also set the time difference dt = 0.004 = 1
250

and τi = 0.0873 for
all i = 1, 2, · · · , 44. The simulated observation data is given in Figure
3.12, and we also present the log data with the observation noises in
Figure 3.13.
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Figure 3.12: Simulated observation
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Figure 3.13: Simulated observation with the extra noise term

For performing the proposed particle filter algorithm, we set the
initial probability densities for the initial states as

χ(0) ∈ N (0.02, 0.01) and ξ(0) ∈ N (0.5, 0.1)

and the bounds for the parameters are set as

1 < κ < 2,

0.1 < λχ < 1,

0.1 < σξ < 1,

0.001 < λξ < 0.1,

0.1 < σξ < 1,

0.1 < ρ < 1.

The number of particle is given by NS = 350 and we perform the
algorithm proposed in the previous section for σǫ = 0.3, 0.6. In the
original data, the true value for σǫ is set to be 0.1.

We demonstrate the results for estimating the states χ, ξ and the
parameter Θ for the two cases (σǫ = 0.3, 0.6). It should be noted that
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the results for σǫ = 0.6 are better than the results for σǫ, even though
the value of σǫ = 0.3 is near the true value of σǫ.
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Figure 3.14: Estimation of χ process
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Figure 3.15: Estimation of ξ process
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Figure 3.17: True and estimated λχ
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Figure 3.18: True and estimated σχ
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Figure 3.19: True and estimated λξ
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Figure 3.20: True and estimated σξ
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Figure 3.21: True and estimated ρ
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3.11 Concluding Remarks

In this chapter, we have described the two factor model of Schwartz
and Smith (2000) used to model the behavior of futures contracts for
energy commodities. In this model, the futures prices are defined in
terms of a spot price where the log of this price is represented by two
unobservable stochastic factors. We use the geometric approximation
to take care of the delivery period. Hence, we are able to find an
analytical solution for the futures price. Then, we implement a sen-
sitivity analysis of the ML function to the parameters and the extra
noise imposed on the measurements. It seems from the sensitivity
analysis that the parameters are difficult to find using standard op-
timization methods. The second part of the chapter focuses on the
use of particle filtering method to estimate the state and the param-
eters of the model. We implement a simulation study to check the
feasibility of this approach.
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Chapter 4

Infinite Dimensional Kalman
Filtering Applied to New
Energy Spot Model

4.1 Introduction

As we have discussed in the previous chapter, an important issue is
the estimation of the model parameters, where we used the maximum
likelihood method. In order to derive the likelihood functional, the
Kalman filter is constructed in linear models. However, in energy
futures modeling, in spite of the mathematically elegant derivation
of the futures prices which are the observed data, one needs to add
some ad hoc observation noise in order to derive the Kalman filter.
This assumption has been made by numerous authors, either in the
commodity or interest rate markets, see Elliott and Hyndman (2007)
and its reference. The additional noise in the observation has been
interpreted to take into account bid-ask spreads, price limits, or errors
in the data. The argument is clearly forced and unconvincing. Here,
we approach the modeling differently. In our setup, on one hand, the
added measurement noise is built in within the model. On the other
hand, the modeling of the correlation structure between the futures
(observation) is a natural component of our formulation.
In this Chapter, we follow the approach of Aihara and Bagchi (2010a),
Aihara and Bagchi (2010b) applied to the interest rate market. The
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main idea is to assume that the term structure of futures prices on
electricity given by Schwartz and Smith (2000) model is affected by an
error term represented by a stochastic integral that generates infinite
dimensional noise as it should depend on all time of, or to maturity.
This extended model does not need addition of artificial noises to
the observation equation, in order to use the filtering methodology.
Using the martingale property of the modified price under the risk
neutral measure, we derive the arbitrage free model for the spot and
futures prices. We first derive the futures price formula taking into ac-
count the arithmetic average of the payoff function. We then approxi-
mate this by using the geometric average and use infinite-dimensional
Kalman filter to estimate the parameters.

In Section 4.2, we present the new model for the future price for
one maturity date T where we introduce a perturbation term to the
futures price. In Section 4.3, we focus our attention on the electric-
ity futures situation which are based on the arithmetic averages of
the spot prices over a delivery period. In Section 4.4, we derive the
explicit relation between the observed futures prices and the factor
processes. In Section 4.6, we discuss the parameter estimation prob-
lem in relation to the covariance of the noise term of the observation
and derive a quasi likelihood functional. In Section 4.7, we state the
optimal filtering and kernel equations. The last two Sections contain
the simulation work and conclusion, respectively.

As discussed in Chapter 3, the spot price S(t) of a commodity (elec-
tricity) at time t is given by

ln(S(t)) = χ(t) + ξ (t) + h (t) (4.1)

where χ(t) represents the short-term deviation in the price, ξ (t) is the
equilibrium price level and h (t) is a deterministic seasonality function.
Assume that the risk-neutral stochastic process for the two factors are
of the form

{
dχ(t) = (−κχ(t)− λχ)dt+ σχdW

∗
χ(t)

dξ(t) = λξdt+ σξdW
∗
ξ (t)

(4.2)

where W ∗
χ and W ∗

ξ are correlated standard Brownian motions, where
dW ∗

χdW
∗
ξ = ρdt. We denote the current time by t, the maturity of
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the futures by T , and by T ∗ a fixed time horizon where t ≤ T < T ∗.
The futures price F (t, T − t) is given by

F (t, T − t) = exp(B (T − t)χ (t) + C(T − t)ξ (t)

+A (t, T − t)) (4.3)

where

B (T − t) = e−κ(T−t), C(T − t) = 1 (4.4)

A (t, T − t) =
λχ
κ

(
e−κ(T−t) − 1

)
+ λξ(T − t)

+
1

2
σ2
A (T − t) + h(T ) (4.5)

and

σ2
A (T − t) =

σ2
χ

2κ

(
1− e−2κ(T−t)

)
+ σ2

ξ (T − t)

+2
ρσχσξ
κ

(
1− e−κ(T−t)

)

4.2 A New Model for the Electricity Prices

We start with the Schwartz-Smith model discussed in detail in the
previous section. We assume that the correct model for the spot
price is not exactly the same as in (4.1), but is close to it. Given this,
the futures price will be somewhat perturbed from the formula given
in (4.3). Hence, suppose that the correct futures price at time t where
t ≤ T is given by

F corr (t, T − t) = exp[B̄ (T − t)χ (t) + C̄ (T − t) ξ (t) (4.6)

+ Ā (t, T − t) +

t∫

0

σdw∗(s, T − s)]

where

t∫

0

σdw∗(s, T − s) =
∞∑

k=1

t∫

0

σ
1

λk
ek (T − s) dβk (s) (4.7)
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and where ek is a sequence of differentiable functions forming an
orthonormal basis in L2 (0, T ∗) and {βk (t)} are mutually indepen-
dent Brownian motions processes. See (section 2.5.1 for details). Let
q (x, y) represent the correlation of w∗ (t, x) and w∗ (t, y). The extra
stochastic integral term (4.7) which appears in (4.6), represents the
modeling error between the futures price given by (4.3) and the cor-
rect futures price. The term dw∗(s, T −s) represents a two parameter
Brownian motion, it has both time and spatial dimensions. The first
dimension is a representation of the uncertainty through time while
the latter is for the uncertainty for futures with different maturities.
The integral term shows that these uncertainties increase.

When T − t = 0, the correct spot price process is given by

Scorr (t) ≡ F corr (t, 0) (4.8)

To get the corresponding (correct) dynamics for the spot, we need the
dynamics of the futures taking into account that this dynamics un-
der the risk-neutral measure is a martingale. Applying Ito’s formula
to (4.6) , we get

dF corr(t, T − t)

F corr(t, T − t)
=

[
dĀ(t, T − t)

dt
+
dB̄(T − t)

dt
χ(t) (4.9)

+
dC̄(T − t)

dt
ξ(t) + B̄(T − t)(−κχ(t)− λχ) + C̄(T − t)λξ

+
1

2
σ2q(T − t, T − t) +

1

2
σ2
χB̄

2(T − t) +
1

2
σ2
ξ C̄

2(T − t)

+ρσχσξB̄(T − t)C̄(T − t)
]
dt+ σχB̄(T − t)dW ∗

χ(t)

+ σξC̄(T − t)dW ∗
ξ (t) + σdw∗(t, T − t).

For the futures price to be a martingale, the dt-part of (4.9) has
to be zero. For that, we get B̄(t, T − t) = B(t, T − t) , C̄(t, T − t) =
C(t, T − t) given by (4.4) and Ā satisfies

dĀ(t, T − t)

dt
− λχe

−κ(T−t) + λξ

+
1

2
σ2
χe

−2κ(T−t) +
1

2
σ2
ξ + ρσχσξe

−κ(T−t)

+
1

2
σ2q (T − t, T − t) = 0, Ā (T, 0) = h (T ) .
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The solution of this is given by

Ā (t, T − t) = A (t, T − t) +
1

2
σ2

T−t∫

0

q (x, x) dx

where A (t, T − t) is given by (4.5). Substituting ξ(t) in (4.6), we
obtain

F corr(t, T − t) = exp(B(T − t)χ(t) + Ã(t, T − t) (4.10)

+

∫ t

0

[σdw∗(s, T − s) + σξdW
∗
ξ (s)])

where
Ã(t, T − t) = Ā(t, T − t) + λξt + ξ(0). (4.11)

Using (4.8), the correct spot price process is given by

Scorr(t) = F corr(t, 0)

= exp(χ(t) + h(t) + λξt

+

∫ t

0

{σdw∗(s, t− s) + σξdW
∗
ξ (s)}).

After here, we omit writing the expression ”corr” for S(t) and
F (t, T ) processes.

4.3 Practical Model for the Electricity Prices
(Geometric Average Approximation)

As we have done in Section 3.3 in the previous chapter, we are inter-
ested in pricing the electricity futures contracts which are based on
the arithmetic average of the spot prices over a delivery period [T0, T ].
Hence, we follow the same procedure and we get the following formula
for the futures price

F (t, T0, T ) =
1

T − T0

T∫

T0

F (t, η)dη,
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This price using (4.10) satisfies

F (t, T0, T ) =
1

T − T0

T∫

T0

exp
[
B (η − t)χ (t) + Ã (t, η − t)

+

t∫

0

{σdw∗(s, η − s) + σξdW
∗
ξ (s)}


 dη, (4.12)

where B and Ã satisfy (4.4) and (4.11), respectively. To simplify the
pricing formula, we adapt again the same method of Section 3.3 in
using the geometric average approximation. In this case the futures
price for this average satisfies

F̃ (t, T0, T ) = E{exp{ 1

T − T0

∫ T

T0

log S(η)dη}|Ft}

and for t < T0

F̃ (t, T0, T ) = exp{ 1

T − T0

T∫

T0

[B (η − t)χ (t) + Ã (t, η − t) (4.13)

+

t∫

0

{σdw∗(s, η − s) + σξdW
∗
ξ (s)}]dη}

where it is obvious that B and Ã satisfy the same equations (4.4) and
(4.11), respectively.
Using x = η − t in (4.13) and setting

f(t, x) = B (x)χ (t) + Ã (t, x) +

t∫

0

{σdw∗(s, x+ t− s),

we also have

F̃ (t, T0, T ) = exp{ 1

T − T0

∫ T−t

T0−t

f(t, x)dx}.
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4.4 Observation Mechanism (Geometric Average

Approximation Case)

In practice, the observed real data for the futures are on daily basis
and transformed such that the time-to-delivery τ = T0−t is fixed as a
constant. See section 3.5.1 for similar adjustment to the futures price
formula. For each t, the time to delivery T i

0 − t is set as a constant
time period τi for i = 1, 2, · · · , m and T − T0 is set as a constant θ (1
month) for all i. Hence our observation data becomes

y (t, τi) = log F̃ (t, τi + t, τi + t+ θ) . (4.14)

Setting z = η − t in (4.13), y(t, τi) satisfies

y (t, τi) =
1

θ
{

θ+τi∫

τi

B (z) dzχ (t) +

θ+τi∫

τi

Ã (t, z) dz

+

t∫

0

θ+τi∫

τi

[σdw∗(s, z + t− s) + σξdW
∗
ξ (s)]dz} (4.15)

In differential form, this observation mechanism becomes

dy(t, τi) =

{
−κH(τi)χ(t) +

1

θ
(fw(t, θ + τi)− fw(t, τi))

+
1

θ

∫ θ+τi

τi

∂Ã(t, z)

∂t
dz − λχH(τi)}dt

+ σχH(τi)dW
∗
χ(t) + σξdW

∗
ξ (t) +

σ

θ

∫ θ+τi

τi

dw∗(t, z)dz, (4.16)

where

dfw(t, x) =
∂fw(t, x)

∂x
dt+ σdw∗(t, x) + σξdW

∗
ξ (t) (4.17)

fw(t, 0) = 0 (4.18)

and

H(τ) =
1

θ

∫ θ+τi

τi

B(z)dz =
1

κθ
[e−κτi − e−κ(τi+θ)]
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We set the observation state as

Y (t) = [y(t, τ1), y(t, τ2), · · · , y(t, τm)].
Remark 3. Notice that the identification usually is performed under
the real world measure denoted by P, because the historical data of the
futures are available to us under this measure. In our derivation, the
extra infinite dimensional noise term, see equation (4.6) is added to
the futures price under the risk neutral measure Q. This implies that
the market price of risk terms are included in (4.17). In this chapter
and also in the next chapter, we assume that this perturbation is small
and we can safely ignore this market price of risk. Theoretically it is
possible to include this risk which is denoted by λw(x). The Brownian
motion process w(t, x) in the physical measure P is transformed to the
new Brownian motion process w∗(t, x) in the risk neutral measure Q

such that
w(t, x) = w∗(t, x)− λw(x)t,

if the following Novikov condition is satisfied:

∞∑

k=1

1

λ2k
(λw, ek)

2 < Constant.

Where λk is defined by (2.30) in Chapter 2, see Da Prato and Zabczyk
(1992) for details.

Hence, For including this market price of risk, we only need to
reset the term 1

2
σ2q(x, x) as 1

2
(σ2q(x, x) + σλw(x)). For more details,

we refer to Aihara and Bagchi (2010a).

4.5 The Kalman Filter Algorithm

The main purpose of introducing Section 2.5 is to show that the
finite-dimensional systems (2.13) and (2.14) could be extended to the
infinite-dimensional ones. Here we propose a heuristic review of the
infinite-dimensional stochastic systems theory to be applied to the
modeling of the energy futures market without using any functional
analysis tools.

The system state X(t) ∈ Rn in (2.13) is extended to X(t, x) where

x denotes the spatial variable in]0, T̂ [. (In the mathematical finance
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field, x normally represents the time-to-maturity or maturity vari-
ables.) i.e.,

X(t) ∈ Rn is now replaced by X(t, x) for x ∈ ]0, T̂ [ (4.19)

The system matrix A(t) in (2.13) is now replaced by a partial
differential operator with respect to x. Here we only treat the first
order partial differential operator, i.e.,

A(t) ∈ Rn × Rn is replaced by A =
∂

∂x
(4.20)

where we use the same symbol A but it should be noted that
the partial differential operator A is not a bounded operator, as in
the finite dimensional case where A is given by a finite dimensional
matrix1 Now our infinite-dimensional system becomes

dX(t, x) = AX(t, x)dt+ dw∗(t, x), (4.21)

where the Brownian motion w∗(t, x) which depends on the new
variable x has been described in Subsection 2.5.1. For a fixed x, this
new Brownian motion w(t, x) is just a standard Brownian motion,
where,

E{w∗(t, x)w∗(t, y)} = q(x, y)t. (4.22)

4.5.1 Observation mechanism with additive noise

Although equation (4.21) represents an infinite dimensional system,
the corresponding observation mechanism in practice is a finite dimen-
sional one. For each t, we can not observe the state X(t, x) for all x.
One possible observation mechanism for the state X(t, x), adjusting
the observation matrix C in (2.14) is given by

CX(t, x) =
1

θ

[∫ T1+θ

T1

X(t, x)dx, · · · ,
∫ Tm+θ

Tm

X(t, x)dx

]′

, (4.23)

1For a mathematical treatment of a non-bounded operator, we need tools from semi-

group or variational form in functional analysis.
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where 0 < T1 < · · · < Tm < T̂ and θ > 0, and this form often
appears when modeling the energy market. This occurs when we con-
nect the system factor model of the spot price with the observations
represented by the futures prices with different times to delivery.

The infinite dimensional Kalman filter can be summarized as fol-
lows:

{
dX(t, ·) = AX(t, ·)dt+ dw∗(t, ·)
dY (t) = CX(t, ·)dt+ dW o(t)

(4.24)

where W o(t) is still a finite-dimensional Brownian motion as used
in (2.14).
With some minor technical modifications of subsection 2.5.2, Kalman
filter algorithm takes the form





dX̂(t, ·) = AX̂(t, ·)dt+K(t, ·)Σ−1
o dν(t)

dν(t) = dY (t)− CX̂(t, ·)dt
K(t, ·) = P (t)C∗

, (4.25)

It has the same form of the finite dimensional case, except that
we need to define the gain K and its related operators P (t) and C∗.
Before showing the exact forms of P and C∗, we shall first show the
estimation error, i.e., the error covariance for this system. In this
case, X̂(t, x) is a function of the spatial variable x and we need to
define the estimation error for one point x in relation to another point
in the spatial domain y, i.e.,

p(t, x, y) = E{(X(t, x)− X̂(t, x))(X(t, y)− X̂(t, y))|Yt}. (4.26)

to characterize the kernel of the covariance operator P (t). The exact
form of P (t)C∗ is then given by

P (t)C∗ =

∫ T̂

0

p(t, ·, y)C∗dy

=
1

θ

[∫ T1+θ

T1

p(t, ·, y)dy, · · · ,
∫ Tm+θ

Tm

p(t, ·, y)dy
]
.

Hence to solve the above Kalman filter we need the exact equation
for p(t, x, y). To derive this equation, we set A = ∂

∂x
and A∗ = ∂

∂y
in
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the finite dimensional Riccati equation and we get

∂p(t, x, y)

∂t
=
∂p(t, x, y)

∂x
+
∂p(t, x, y)

∂y
+ q(x, y)

−Σm
i=1Σ

m
j=1

1

θ

∫ Ti+θ

Ti

p(t, x, z1)dz1[Σ
−1
o ]i,j

1

θ

∫ Tj+θ

Tj

p(t, z2, y)dz2.

4.5.2 Observation mechanism without additive noise

In the financial market, we often encounter the case that some parts
of system state can be observed without observation noise,i.e.

Y (t) = CX(t, ·) (4.27)

The differential form of the above equation becomes

dY (t) = C(AX(t, ·))dt+ Cdw∗(t, ·), (4.28)

where Cdw∗ is a part of the system noise. Now we shall calculate
this noise covariance. It is easy to show that

E{Cdw∗(t, ·) Cdw∗(t, ·)′}
dt

=
1

θ2

[∫ Ti+θ

Ti

∫ Tj+θ

Tj

q(x, y)dxdy

]

m×m

.(4.29)

The infinite-dimensional noise w(t, x) always guarantees the positivity
of the above matrix (4.29) for finitem. This property was also checked
in the US-bond market by Aihara and Bagchi (2010b). From this
fact, we will develop our modeling procedure by using the infinite-
dimensional systems, which will be discussed further in this chapter.
Now, we present the Kalman filter in its original form:





dX̂(t, x) = ∂X̂(t,x)
∂x

dt+K(t, x)[C(CQ)∗]−1(dY (t)
−1

θ
[X(t, Ti + θ)−X(t, Ti)]m×1dt)

K(t, x) = 1
θ

[∫ Ti+θ

Ti
p(t, x, y)dy

]
1×m

+ 1
θ

[∫ Ti+θ

Ti
q(x, y)dy

]
1×m

,(4.30)

where

[C(CQ)∗] =
1

θ2

[∫ Ti+θ

Ti

∫ Tj+θ

Tj

q(x, y)dxdy

]

m×m

. (4.31)
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The error covariance p(t, x, y) is a solution of

∂p(t, x, y)

∂t
=
∂p(t, x, y)

∂x
+
∂p(t, x, y)

∂y
+ q(x, y)

−Σm
i=1Σ

m
j=1

1

θ

∫ Ti+θ

Ti

(p(t, x, z1) + q(x, z1))dz1

×[(C(CQ)∗)−1]i,j
1

θ

∫ Tj+θ

Tj

(p(t, z2, y) + q(z2, y))dz2.

4.6 Parameter Estimation Problem

Our objective now is to estimate the unknown system parameters.
Our first difficulty is the covariance kernel q(x, y). If we can param-
eterize it with one or more parameter(s), say c, then the parameters
we need to estimate are κ, σχ, σξ, σ, λχ, λξ, c and the seasonality func-
tion h(t). The standard approach is to use the method of maximum
likelihood, for which we need to calculate the likelihood functional
from the observation data {Y (t); 0 ≤ t ≤ tf}, where tf denotes a final
time. However, since the observation noise covariance

Φ = [σ2
χH(τi)H(τj) + ρσχσξ(H(τi) +H(τj)) + σ2

ξ

+
σ2

θ2

∫ θ+τi

τi

∫ θ+τj

τj

q(x, z)dxdz]ij (4.32)

is unknown, we do not have an obvious likelihood functional. To un-
derstand this problem, note that in our discussion in Section 2.3.4, we
write down the likelihood on the assumption that the covariance of
the observation noise is known. However, in our case here, the obser-
vation noise covariance, see equation (4.32) contains unknown param-
eters which need to be estimated. In this case, there is no apparent
fixed measure on C = C([0, T ] ;Rm) such that the measure induced
by {Y (t); t ≤ t ≤ tf} on C is absolutely continuous with respect to
that fixed measure. However, since our model is linear and Gaussian,
we may circumvent this problem by working with a quasi likelihood
functional as proposed in Bagchi (1975). This is done by defining an
appropriate functional and showing that minimizing this functional
with respect to all the unknown parameters, including those in the
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observation noise covariance, yields consistent estimates of those pa-
rameters. We can, in fact, replace the observation noise covariance
appearing as weight in the usual likelihood functional expression by
any positive definite matrix which we take here to be the identity
matrix I. The noise covariance matrix does appear in the quasi like-
lihood functional through the filtered states and may be estimated
from there. The quasi likelihood functional for our problem is

QL(tf , Y, I) =

∫ tf

0

(H
[
χ̂(s)

f̂w(s)

]
+ Ĝ)∗dY (s)

− 1

2

∫ tf

0

||(H
[
χ̂(s)

f̂w(s)

]
+ Ĝ)||2ds, (4.33)

where x̂(s) and f̂w(s) are the ”best” estimates of the states x(s) and
fw(s) given the observation data σ{Y (τ); 0 ≤ τ ≤ s},

H = [−κH(τi),
1

θ

∫ T ∗

0

{δ(x− θ − τi)− δ(x− τi)}(·)dx]i (4.34)

and

Ĝ = [
∂Â(t, τi)

∂t
− λχH(τi)]i

= [(h(τi + θ + t)− h(τi + t))/θ + λξ − λχH(τi)]i (4.35)

The MLE of the unknown parameters are then given by
[
κ̂ σ̂χ σ̂ξ σ̂ λ̂χ λ̂ξ ω̂S

]
= argmax QL(tf , Y, I)

where we set the function form of Q =
∫ T̂

0
σ2q(x, y)(·)dy and the

seasonality function h(t) = h(ωS; t) for an unknown periodic factor
ωS.

4.7 State Estimation Problem

Now we summarize the system and observation mechanism in the
usual vector notation;

d

[
χ(t)

fw(t, x)

]
=

[ −κχ(t)− λχ
∂fw(t,x)

∂x

]
dt+

[
σχdW

∗
χ(t)

dw̃(t, x)

]
,
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where dw̃(t, x) = σdw∗(t, x) + σξdW
∗
ξ (t) and

dY (t) = H
[

χ(t)
fw(t, ·)

]
dt+ Ĝdt+ σχH̄dW

∗
χ(t) +Kdw̃(t, ·),

where H is defined by (4.34),

H̄ = [H(τi)]m×1, and K(·) = [
1

θ

∫ θ+τi

τi

(·)dz]m×1.

As is mentioned in Chapter 2, the observation covariance Φ is positive
definite and can be obtained numerically. (The details will be stated
in the next section). Hence from Chapter 2, we can derive the optimal
filter equation, see also Kallianpur (1980).The optimal estimates for
x(t) and fw(t, x) are given by

d

[
χ̂(t)

f̂w(t, x)

]
=

[ −κχ̂(t)− λχ
∂f̂w(t,x)

∂x

]
dt

+

(
P(t)H∗ +

[
σ2
χH̄

∗ + ρσχσξ1
∗
m

ρσχσξH̄
∗ + σ2

ξ1
∗
m + σ2QK∗

])
Φ−1

× (dY (t)−H
[

χ̂(t)

f̂w(t, ·)

]
dt− Ĝdt), (4.36)

where 1∗
m = [1, 1, · · · , 1],

QK∗ = [
1

θ

∫ θ+τ1

τ1

σ2q(x, y)dy, · · · , 1
θ

∫ θ+τm

τm

q(x, y)dy],

P(t) =

(
Px(t) Pxw

Pwx(t) Pw

)
,

P = P∗ and

Px(t) = px(t), Pxw(t) = pxw(t, x),

Pw(t) =

∫ T̂

0

pw(t, x, y)(·)dy,

and

PH∗ =

(
px(t)(−κH̄) + [1

θ
(pxw(t, τi + θ)− pwx(t, τi)]1×m

pxw(t, x)(−κH̄) + [1
θ
(pw(t, x, τi + θ)− pw(t, x, τi)]1×m

)
.
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The kernel equations are given by

dpx(t)

dt
= −2κpx(t) + σ2

χ −
[
−κpx(t)H̄∗]

+
1

θ

[
pxw(t, θ + τi)− pxw(t, τi)]

∗ + σ2
χH̄

∗ + ρσχσξ1
∗
m

]

× Φ−1

[
−κpx(t)H̄ +

1

θ
[pxw(t, θ + τi)− pxw(t, τi)]

]

+ σ2
χH̄ + ρσχσξ1m, px(0) = Cov{x(0)}, (4.37)

∂pxw(t, x)

∂t
= −κpxw(t, x) +

∂pxw(t, x)

∂x
+ ρσχσξ

−
[
−κpx(t)H̄∗ +

1

θ
[pxw(t, θ + τi)− pxw(t, τi)]

∗ + σ2
χH̄

∗
]

+ ρσχσξ1
∗
m] Φ

−1[−κpxw(t, x)H̄ +
1

θ
[pw(t, x, θ + τi)

− pw(t, x, τi)] + [ρσχσξH̄ + σ2
ξ1m +

σ2

θ

∫ θ+τi

τi

q(x, y)dy]],

∂pw(t, x, y)

∂t
=
∂pw(t, x, y)

∂x
+
∂pw(t, x, y)

∂y
+ σ2q(x, y)

+ σ2
ξ −

[
−κpxw(t, x)H̄∗ +

1

θ
[pw(t, x, θ + τi)

−pw(t, x, τi)]∗ + ρσχσξH̄
∗ + σ2

ξ1
∗
m +

σ2

θ

∫ θ+τi

τi

q(x, y)dy

]

× Φ−1

[
−κpxw(t, y)H̄ +

1

θ
[pw(t, θ + τi, y)− pw(t, τi, y)]

∗

+ρσχσξH̄ + σ2
ξ1m +

σ2

θ

∫ θ+τi

τi

q(x, y)dx

]
, (4.38)

with pxw(0, x) = pw(0, x, y) = 0.
Hence we obtain

f̂(t, x) = E{f(t, x)|Yt}
= χ̂(t)B(x) + Ã(t, x) + f̂w(t, x). (4.39)
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4.8 Simulation Studies

4.8.1 Numerical analysis of observation covariance from real
data

Here we first check the invertibility of the covariance of the real ob-
servation data. We used a historical time-series of UK-Gas-NBP spot
prices quoted daily from 2-Jan-2007 to 28-Dec-2008. From Chapter
2, we calculate the covariance of Y (t) numerically such that

1

n

n∑

i=1

(Y (ti+1)− Y (ti))
′(Y (ti+1)− Y (ti)) ∼ Φ. (4.40)

In Figure 4.1, the used data is presented.

10

20

30

40

0

0.5

1

1.5

2.5

3

3.5

4

4.5

5

Time to delivery(month τ
i
)time(year)

f
u
t
u
r
e
s
 
v
a
l
u
e

Figure 4.1: Historical real data of UK-gas-NBP

From (4.40), we get the covariance Φ shown in Figure 4.2.
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Figure 4.2: Numerically obtained Φ

Now we will calculate the inverse of Φ and at the same time we
check this invertibility to calculate ΦΦ−1 numerically. These results
are demonstrated in Figure 4.3 and Figure 4.4, respectively.
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Figure 4.3: Numerically obtained Φ−1
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Figure 4.4: Numerically obtained ΦΦ−1

From these results, we find that it is possible to realize the maxi-
mization of quasi likelihood shown in Section 4.6 through the Kalman
filter given in Section 4.7. As a value for the noise covariance Φ, we
use the numerically obtained value of (4.40). Furthermore, we can
construct the proxy function for Φ as used in the work of Aihara and
Bagchi (2010b). We set the function form of q(x, y) such that

q(x, y) =

100∑

i=1

exp(−cx/T ∗) sin(iπx/T ∗) exp(−cy/T ∗) sin(iπy/T ∗)/i2. (4.41)

Hence from (4.32), we can choose σχ, σξ, ρ, σ and c to fit the diagonal
shape of Φ. The usual mean square method dose not work properly.
For details, please consult Aihara and Bagchi (2010b). Here by using
trial and error procedure, we consider the maximum of the delivery
horizon to be T ∗ = 5

σ = 0.5, κ = 1.421, σχ = 0.07, σξ = 0.01, ρ = 0.3, c = 3.

The obtained shape is shown in Figure 4.5.
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Figure 4.5: Numerically obtained Φ(i, i) and its proxy shape

4.8.2 Simulation studies

We set the system parameters as follows:

κ = 1.321, λχ = 0.623, σχ = 1.2,

λξ = 0.04, σξ = 1.2, ρ = 0.6, σ = 1.

The seasonality function is set as

h(t) = 14.2521 + 4.0052t+ hp(t)

where we choose the seasonality function that represents UK-NBP
gas market, derived in Subsection 1.1.4. The initial conditions for
χ, ξ are set as

χ(0) = 0.8, ξ(0) = 20.

We assume that the covariance kernel of σw(t, x) is given by

q(x, y) =
100∑

k=1

sin(kπx/5) sin(kπy/5),
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where q(x, y) ∼ δ(x−y), where we check the feasibility of the proposed
algorithm in the severe noise kernel case for simulation studies.

The simulated observation data for a fixed delivery period of
T −T0 = 1 month, is shown in Figure 4.6. The factor process f(t, x)
is also demonstrated in Figure 4.7.
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Figure 4.6: Observation data
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4.8.3 MLE results

We assume that the unknown parameters are κ, λχ, σχ, λξ, σξ, ρ and
σ. For finding MLE, we used the GA-algorithm in MATLAB. The
initial values are set as

κ = 1.5, λχ = 0.5, σχ = 0.15, λξ = 0.05,

σξ = 0.1, ρ = 0.5, σ = 0.5

with the upper and lower bounds given by

1 ≤ κ ≤ 2, 0.1 ≤ λχ ≤ 1.0, 0.1 ≤ σχ ≤ 0.2, 0.01 ≤ λξ ≤ 0.1,

0.05 ≤ σξ ≤ 0.3, 0.1 ≤ ρ ≤ 1.0, 0.1 ≤ σ ≤ 2

We demonstrate the running time procedure of GA in Figure 4.8.
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Figure 4.8: Evolutions of quasi-likelihood

κ̂ λ̂χ σ̂χ λ̂ξ σ̂ξ ρ̂ σ̂

1.3757 0.9131 0.1292 0.0481 0.0772 0.3528 1.8840

Table 4.1: Estimated parameters
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The estimates of the parameters are listed in Table 4.1. The esti-
mated log F̃ (t, x) with MLE parameters is shown in Figure 4.9, and
the true and estimated spot and log F̃ (t, 1.2698) processes are also
shown in Figure 4.10 and Figure 4.11.
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Figure 4.9: Estimated f(t, x) process
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4.8.4 Real data analysis

The data we consider, is the data of the UK-NBP Gas prices. For
that, we use the estimated parameters for hp(t) calculated in Chapter
1. The real observation data is presented in Figure 4.12.
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Figure 4.12: Real observed data
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For the covariance of the observation noise Φ, we use the numer-
ically calculated value shown in Figure 4.2 of subsection 4.8.1. The
kernel form of q(x, y) is selected as in (4.41) with c = 3. The unknown
parameters are κ, λχ, σχ, λξ, σξ, ρ, σ, χ(0), ξ(0), and λq, where λq is the
market price of risk included in the initial condition of f(0, x) given
by

f(0, x) =
1

2
σ2λq

∫ x

0

q(z, z; c)dz + ξ(0) +
λκ
κ
(e−κx − 1) + λξx

+h(x) +
σχ
κ
(1− e−2κx) +

1

2
σ2
ξx+ e−κxχ(0) + ρ

σχσξ
κ

(1− e−κx).

See Remark 3 of Section 4.4. The upper and lower bounds of these
parameters are set as

0.1 ≤ κ ≤ 2, 0.1 ≤ λχ ≤ 21.0, 0.01 ≤ σχ ≤ 0.2,
0.01 ≤ λξ ≤ 4, 0.01 ≤ σξ ≤ 3.0, 0.01 ≤ ρ ≤ 1.0,
0.001 ≤ σ ≤ 5, 0.1 ≤ χ (0) ≤ 2.0, 10 ≤ ξ (0) ≤ 50.0,

−2.0 ≤ λq ≤ 2

The running time procedure of GA in Figure 4.13 and the estimates
of the parameters are listed in Table 4.2.
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κ̂ 0.9365

λ̂χ 0.2006

σ̂χ 0.0298

λ̂ξ 3.9216

σ̂ξ 1.1593

ρ̂ 0.0767

σ̂ 0.0228

χ̂ (0) 0.2939

ξ̂ (0) 12.006

λ̂q 1.5582

Table 4.2: Estimated parameters

The estimated f(t, x) process is shown in Figure 4.14. Also, Figure
4.15 and Figure 4.16 demonstrate the estimate of f(t, x) when the
time to maturity x is 50

126
and 2 years, respectively. The case of x = 0

which corresponds to the estimate of the spot price, is also shown in
Figure 4.17.
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Figure 4.14: Estimated f(t, x) process
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Figure 4.17: Estimated f(t, 0)-process

4.9 Concluding Remarks

In this chapter, we propose a new arbitrage free model for the futures
prices of energy. The new model can be used in a mathematically
sound way when estimating the parameters of the model using the
method of maximum likelihood. Using reverse engineering type mod-
eling, we start by assuming that the term structure of futures prices
on electricity given by Schwartz and Smith (2000) model is affected
by an error term represented by a stochastic integral that generates
infinite dimensional noise as it should depend on all time of, or to
maturity. Hence, we do not need to add artificial noises to the obser-
vation equation in order to use the filtering methodology. We extend
the model taking into account the delivery period in the futures prices
by employing the geometric average approximation in the payoff of
the futures. We then show the observation mechanism and formulate
the state space representation of the problem. The factors then are
estimated as solutions of the resulting filtering problem. We discuss
the difficulty in relation to the noise covariance of the measurement
equation and how to remediate it to get a quasi likelihood functional
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that can be used to estimate the unknown parameters using simula-
tion and real data of the spot and futures on the UK-Gas-NBP, the
feasibility of the proposed filter is established.
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Chapter 5

Convolution Particle Filter
Applied to New Energy
Spot Model

5.1 Introduction

As we have discussed in Chapter 4, the formula of the futures price
on electricity is highly nonlinear and contains an infinite dimensional
noise term, see equation (4.12). To overcome this problem we use
the geometric average approximation, so that the logarithm of the
futures price becomes linear with respect to the unobservable factors,
see equation (4.14). This enabled us to use the infinite dimensional
Kalman filter methodology together with the maximum likelihood es-
timation method to estimate the parameters of the state space model.
The aim of this chapter is to keep the futures price as in equation
(4.12), and look for the parameter estimation problem without using
the geometric approximation. As the observation given by the futures
price is highly non-linear, we propose to use a variant of the particle
filter for the identification of the factors and the parameters of the
system. This filter is based on the convolution kernel approximation
techniques and termed convolution particle filter, see Rossi and Vila
(2006).
In Section 5.2, we briefly repeat our discussion of chapter 4 and
present the forward model together with the mechanism of the ob-
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servation equation. Furthermore, we present our model in a form
ready to be used in this framework. This will be followed by simula-
tion work and studies using real data, which will be shown in Section
5.5. The final section will present the conclusion.

5.2 Practical Model for the Electricity Prices

In this section we briefly repeat our discussion of chapter 4. The
market prices of electricity futures are different from the standard
futures traded in other markets. The electricity futures prices are
based on the arithmetic averages of the spot prices over a delivery
period [T0, T ], given by

1

T − T0

T∫

T0

S(η)dη. (5.1)

Now, for t < T , we can calculate the futures price by

F (t, T0, T ) = E{ 1

T − T0

T∫

T0

S(η)dη|Ft}, (5.2)

where Ft = σ{S(η); 0 ≤ η ≤ t}. Assuming that S(t) ∈ L2 (T0, T ), and
using the linearity of the expectation operator, (5.2) can be written
as

F (t, T0, T ) =
1

T − T0

T∫

T0

E{S(η)|Ft}dη, (5.3)

Using the definition of futures price, it can be simplified as

F (t, T0, T ) =
1

T − T0

T∫

T0

F (t, η)dη, (5.4)
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This price using (4.10) satisfies

F (t, T0, T ) = 1
T−T0

T∫
T0

exp
[
B (η − t)χ (t) + Ã (t, η − t)

+
t∫
0

{σdw∗(s, η − s) + σξdW
∗
ξ (s)}

]
dη, (5.5)

where B and Ã satisfy the following equations, respectively:

B (T − t) = e−κ(T−t) (5.6)

Ã(t, T − t) = Ā(t, T − t) + λξt+ ξ(0). (5.7)

where

Ā (t, T − t) = A (t, T − t) +
1

2
σ2

T−t∫

0

q (x, x) dx

and where A (t, T − t) is given by (4.5).

5.2.1 A forward model

In (5.5), setting x = η − t to consider the time to maturity notation
instead of the time of maturity. Let f(t, x) represents the exponential
part of the integrand given by

f(t, x) = B (x)χ (t) + Ã (t, x)

+

t∫

0

{σdw∗(s, x+ t− s) + σξdW
∗
ξ (s)} (5.8)

we get

df(t, x) =
∂f(t, x)

∂x
dt− 1

2
q̃(x, x)dt + dw̃(t, x), (5.9)

where

w̃(t, x) = σw∗(t, x) + e−κxσχW
∗
χ(t) + σξW

∗
ξ (t), (5.10)
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and

q̃(x1, x2) = σ2q(x1, x2) +
ρσχσξ
2

(e−κx1 + e−κx2)

+σ2
χe

−κ(x1+x2) + σ2
ξ . (5.11)

Hence the futures price in (5.5) becomes

F (t, T0, T ) =
1

T − T0

T∫

T0

exp [f(t, x)] dx.

Notice that the identification usually is performed under the real
world measure. This implies that the market price of risk terms are
included in (5.9). Here, we neglect these terms because our identifi-
cation procedure is easily applied to the model under the real world
measure. See remark 3 in Chapter 4 for further discussion about this
point.

5.2.2 Observation mechanism (arithmetic average case)

In chapter 4, we used the geometric average approximation to derive
the filtering algorithm. In this chapter, we reformulate this observa-
tion mechanism without using any artificial approximation method.
In practice, the futures are available on a daily basis and transformed
as the time-to delivery τi = T i

0− t is fixed as a constant time period τi
for i = 1, 2, · · · , m, where m is the number of futures (observations).
Moreover, the delivery period θ = T − T0 is also fixed to be 1-month
for all the futures. Hence the usual observation data becomes

yi(t) = logF (t, τi + t, τi + t+ θ)

= log
1

θ

∫ τi+θ

τi

exp{f(t, x)}dx,

for τ1 < τ2 < · · · < τm. (5.12)

Also, we set the observation vector as

~Y (t) = [y1(t), y2(t), · · · , ym(t)]
′

where it should be noted that the observation contains the nonlinear
state for f(t, x).
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5.3 Discrete Approximation for

System and Observation

In this section, we are interesting in estimating the parameters of the
new nonlinear state space model given by equation (5.9) for the state
and equation (5.12) for the observation. In this case, the parameter
estimation procedure is often based on an approximation of the op-
timal nonlinear filter using the extended Kalman filter, coupled with
maximum likelihood estimation techniques. Another approach is to
employ the Bayesian framework where the augmented state variable
(f(t, x),Θ) which represents the state and the unknown parameters,
is processed by a filtering procedure. The main issue regarding the
use of the extended Kalman filter and its various alternatives, is that
they do not always give good results. On the other hand, particle fil-
ters propose a good alternative in which Θ is considered as a random
variable with a prescribed a priori density function. Then the usual
augmented state approach can be considered. Such an identification
problem can be formulated as the problem of estimating the initial
state of a known, but albeit more complex system, see Balakrishnan
(1969). To show this point, consider we have the following dynamical
system:

X(t) = F (X(t); Θ) (5.13)

ν(t) = C X(t) + n(t) (5.14)

where X(t) is the state and ν(t) is the observation. If we form a new
vector Z(t) = [X, θ(t)] where

θ̇(t) = 0 (5.15)

θ(0) = Θ (5.16)

Then we can write (5.13) in the form:

Ż = F̃ [Z] (5.17)

ν(t) = H(Z) + n(t) (5.18)

and the problem of estimating X(t) and Θ simultaneously is the same
as that of determining Z(t) from ν(s) where 0 < s < t. In the follow-
ing section, we show how this system can be represented when using
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the convolution particle filter. For that, we need to transform our
state equation from stochastic partial differential equation to stochas-
tic partial difference equation.
In the following, we present the approximation method to convert the
infinite-dimensional system (5.9) to the finite-dimensional one.

The spatial region ]0, T ∗[ is discretized as

0 = x1 < x2 < · · · < xi < · · · < xk = T ∗,

where we set for all i
∆x = xi+1 − xi.

Now we approximate the partial differential operator ∂(·)
∂x

as the finite-
dimensional matrix A;

A =
1

∆x




1 −1 0 · · · 0
0 1 −1 · · · 0
...

...
. . .

. . .
...

0 0 · · · 1 −1
0 0 · · · 0 1




k×k

. (5.19)

We also discretize the time region [0, tf ] as

0 = t0 < t1 < t2 < · · · < ti < · · · < tℓ = tf ,

where ∆t = ti+1 − ti for all i. Hence our system state f(t, x) is pro-
jected into the finite points {ti, xj} for i = 1, 2, · · · , ℓ, j = 1, 2, · · · , k,
i.e., denoting fij = f(ti, xj), we construct the finite dimensional vec-
tor;

~fi = [fi1, fi2, · · · , fik]′. (5.20)

So the partial time derivative of f is approximated as

∂f(t, x)

∂t
∼

~fi+1 − ~fi
∆t

.

The deterministic input 1
2
q̃(x, x) is also transformed to

1

2
~q =

1

2
[q(x1, x1), q(x2, x2), · · · , q(xk, xk)]′.
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Hence the finite-dimensional version of the system (5.9) becomes

~fi+1 − ~fi
∆t

= A~fi −
1

2
~q + (

∂w̃(t, x)

∂t
)

︸ ︷︷ ︸
noise term

. (5.21)

Next we shall show how to generate the noise term ∂w̃(t,x)
∂t

in a discrete
time and spatial space. We list up the detail steps

• w(t, x) is approximated as

w∗(t, x) ∼
100∑

i=1

e−cx/T ∗

sin(iπx/T ∗)
wi(t)

i

where wi(t), i = 1, 2, · · · are mutually independent standard
Brownian motion processes.

• Consider the finite points {xj} for j = 1, 2, · · · , k,i.e.,

w̃(t, x) ∼ [w̃(t, x1), · · · , w̃(t, xℓ), · · · , w̃(t, xk)]′,

where

w̃(t, xℓ) =

100∑

i=1

e−cxℓ/T
∗

sin(iπxℓ/T
∗)
wi(t)

i
+e−κxℓσχW

∗
χ(t)+σξW

∗
ξ (t).

• At each time tp, we generate mutually independent normal ran-
dom numbers Npi, i = 1, 2, · · · , 102. Then our Brownian motion
wi(t) becomes

wi(tp) ∼ Npi

√
∆t, for i = 1, 2, · · · , 100

and

{
W ∗

χ(tp) ∼ (Np101ρ+Np102

√
1− ρ2)

√
∆t

W ∗
ξ (tp) ∼ Np101

√
∆t
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• Finally we get

∂w̃(tp, xℓ)

∂t
∼
(

100∑

i=1

e−cxℓ/T
∗

sin(iπxℓ/T
∗)
Npi

√
∆t

i

+e−κxℓσχ(Np101ρ+Np102

√
1− ρ2)

√
∆t + σξNp101

√
∆t
) 1

∆t
.

We denote the vector version of above quantity by

∆ ~̃Wp
1

∆t
.

Now we obtain the discrete version of (5.9):

~fi+1 = (1 + A∆t)~fi −
1

2
~q∆t +∆ ~̃W i, (5.22)

where it should be noted that in order to support the discretely ap-
proximated system converges to the original one as ∆t,∆x → 0, we
need the following condition:

|∆t
∆x

| < 1.

Here noting that the spatial variable x is a time-to-maturity variable,
we set

∆x = 2∆t

to fit the discrete time points to the discrete time-to-maturity points.
We also mentioned about the special property for the 1st order hy-
perbolic equation. As the time goes by, the spatial region is shrinking
without a boundary condition on x = T ∗. So we set the artificial
boundary condition fi+1,k = fi,k, because in our situation T ∗ is set
to be longer than tf . Summarizing above procedure, we denote the
discretized system as

~fi+1 = F (~fi,∆
~̃W i,Θ) (5.23)

where Θ denotes the parameters which we need to identify ,i .e.,

Θ = [σ, c, ξ(0), λχ, κ, λξ, σχ, σξ, ρ].
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Now the observation ~Y (t) given by (5.12) is also generated from ~fi,
i.e.

~Y (ti) = [yℓ(ti)]m×1,

where

yℓ(ti) = log
1

θ

∫ τi+θ

τi

exp(f(ti, x))dx

∼ log


1

θ

[τi+θ]∑

j=[τi]

exp(fi,j)∆x




and [τ ] denotes the index of τ in the spatial space x. The discretized

observation ~Yi = ~Y (ti) is symbolically denoted by

~Yi = h(~fi). (5.24)

5.4 Convolution Particle Filter

In general, the classical filters such as sample importance resampling
(SIR), and regularized particle filter (RPF), can handle the aug-
mented state vector if a dynamic noise term is artificially added to
the parameters. But, the drawback of this, is the reduction of the
estimation performance of the filter. However, another promising ap-
proach which avoids adding extra artificial noises to the parameters
is the particle convolution filter approach proposed by Rossi and Vila
(2006). This approach is based on kernel estimation techniques and it
is free of the analytical knowledge of both the state and observation
variable distributions. Only the capability of simulating the state and
observation noises is required. Moreover, it can handle the problem of
small magnitude observation noise which is typical in financial data.
To apply the convolution filter of Campillo and Rossi (2006), we sup-
pose that the parameter Θ is a random variable with a given prior
law PΘ (Θ). Now our system given in the previous section becomes





Θi+1 = Θi

~fi+1 = F (~fi,∆
~̃W i,Θi+1)

~̃Y i+1 = h(~fi+1)− h(~fi)

(5.25)
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where our observation mechanism is reset as ~̃Y i+1, because in the
continuous case we always use the observation data as the differential
form d~Y (t). Furthermore, noting that the original initial condition
f(0, x) is given by

f(0, x) =
1

2
σ2

∫ x

0

q(z, z; c)dz + ξ(0) +
λκ
κ
(e−κx − 1) + λξx

+h(x) +
σχ
κ
(1− e−2κx) +

1

2
σ2
ξx+ e−κxχ(0)

+ρ
σχσξ
κ

(1− e−κx), (5.26)

the discrete version becomes

~f0(Θ) = function of Θ. (5.27)

The essence of the convolution particle filter is to combine the sim-
ulated observation data with the real observed data by using the
Parzen-Rosenblatt kernel K. This kernel K : Rd 7→ R is a bounded
positive symmetric function such that

∫
K (x) dx = 1. For example,

the Gaussian kernel isK (x) =
(

1√
2π

)d
e−

‖x‖2

2 . The Parzen-Rosenblatt

kernel generally satisfies ‖x‖dK (x) → 0 as ‖x‖ → ∞.
In this thesis, we only use this to construct the likelihood func-

tional which is used to construct the particle filter. Now our convo-
lution particle filter algorithm is:

• We assume that PΘ(Θ) is set as the uniformly distributed prob-
ability in some bounded set. Then we generate N i.i.d. particles
Θ(1),Θ(2), · · · ,Θ(N).

• The initial particles of ~f
(i)
0 for i = 1, 2, · · · , N are automatically

generated from (5.27).

• From (5.25) we can generate the sequence of ~f
(j)
i+1,Θ

(j)
i+1,

~̃Y
(j)

i+1 for
j = 1, 2, · · · , N .

• At each time step t = ti+1, we get the real observation data such
that

Ỹi+1 = real data of ~Y (ti+1)− ~Y (ti). (5.28)
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• Construct the likelihood by using a Parzen-Rosenblatt kernel for
j = 1, 2, · · · , N

p̂(j)(~Y (ti+1)|~f (j)
i , ~Y (ti)) =

1

Nhq
Kh(Ỹi+1 − ~̃Y

(j)

i+1),

where we used the following notation;

Khn
(x) ,

1

hdn
K

(
x

hn

)
(5.29)

and where hN > 0 is the bandwidth parameter and N is the
number of particles. The value of N, hN and the kernel must be
chosen by the user.

• We set the weight ω
(j)
i+1 as

ω
(j)
i+1 = p̂(j)(~Y (ti+1)|~f (j)

i , ~Y (ti)).

• Normalize the weight: for j = 1, 2, · · · , N

ω̂
(j)
i+1 =

ω
(j)
i+1∑N

j=1 ω
(j)
i+1

.

• The filtering densities are given by

p(~fi+1|~Y (ti+1) =

N∑

j=1

ω̂i+1δ
(j)
~fi+1

p(Θi+1|~Y (ti+1) =
N∑

j=1

ω̂i+1δ
(j)
Θ

• Resample for the state ~f
(j)
i , if we need.

5.5 Simulation Studies

We start by simulation to the observation data, also from the quoted
spot prices we identify the parameters of h(t) by standard fitting
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procedures, similar to what we have done in section 4.8. We set the
system parameters as follows:

κ = 1.321, λχ = 0.623, σχ = 0.3,

λξ = 0.04, σξ = 0.05, ρ = 0.6

For the initial conditions of χ, ξ, we use

χ(0) = 0.02, ξ(0) = 0.5.

We assume that the covariance kernel of σw(t, x) is given by

σ2q(x, y) =
100∑

k=1

σ2e−c(x+y)

(
sin(kπx)

5

)(
sin(kπy)

5

)
,

with σ = 0.02, c = 0.2. The simulated observation data of the futures
is shown in Figure 5.1. For T−T0 fixed to 1-month, the factor process
f(t, x) is also demonstrated in Figure 5.2.
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Figure 5.1: Observation data
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Figure 5.2: f(t, x)-process

For the simulation of the convolution particle filter, we assume
that the unknown parameters {κ, λχ, σχ, λξ, σξ, ρ, σ, c} are random
constants where each follows a bounded uniform distribution. The
upper and lower bounds are as follows:

1.00 ≤ κ ≤ 2.00 , 0.1 ≤ λχ ≤ 1.00
0.28 ≤ σχ ≤ 0.32 , 0.001 ≤ λξ ≤ 0.06
0.02 ≤ σξ ≤ 0.06 , 0.20 ≤ ρ ≤ 0.90
0.01 ≤ σ ≤ 0.03 , 0.1 ≤ c ≤ 0.3

The initial conditions of χ(0) and ξ(0) are assumed to beN(0.02, 0.005)
and N(0.9, 0.005), respectively.

Now we generate 500 particles for (κ, λχ, σχ, λξ, σξ, ρ, σ, c) vector.
Hence,we get the 500 initial conditions f(0, x) from (5.26) and also
500 q̃(x, x) functions form (5.11). The Parzen-Rosenblatt kernel is set
as

Kh(·) =
1

(2πh)m
exp{−|| · ||2

2h2
},

with h2 = 0.09 and m is the dimension of ~Y (m = 44).
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The estimated f(t, x) process is shown in Figure 5.3. We per-
formed five simulation studies. The estimates for f(t, x) at x = 0.79
and x = 3.19 are shown in Figure 5.4 and Figure 5.5, respectively.
The estimate of S(t) is also shown in Figure 5.6.
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Figure 5.3: Estimated f(t, x) process

0 0.2 0.4 0.6 0.8 1
3.2

3.4

3.6

3.8

4

4.2

4.4
True value of system and its estimates

Time

Tr
ue

  a
nd

 e
st

im
at

ed
 p

ro
ce

ss
es

 

 
True value
Estimated values

Figure 5.4: Estimated f(t, 0.79)
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Figure 5.5: Estimated f(t, 3.17)
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Figure 5.6: Estimated S(t)

Finally we demonstrated the estimation results for unknown pa-
rameters κ, σχ, λχ, λξ, σξ, ρ, σ and c. From our estimation of function
q̃(x, x), see Figure 5.7, we noticed that even when some of the pa-
rameters are not fitted nicely, the function q̃(x, x) as a whole is well
identified. Notice that for the dynamics of the futures price, see equa-
tion (5.9), the value of the function q̃(x, x) is important.
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Figure 5.7: Estimated q̃(x, x)
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Figure 5.8: Estimated κ
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Figure 5.9: Estimated σχ
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Figure 5.10: Estimated λξ
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Figure 5.11: Estimated σξ
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Figure 5.12: Estimated ρ
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Figure 5.13: Estimated σ
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Figure 5.14: Estimated λχ
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Figure 5.15: Estimated c

5.6 Concluding Remarks

In this chapter, we use the futures price formula with arithmetic av-
erage and do not use any approximation (geometric average) to its
payoff structure as we have done in chapter 4. The price we have
to pay for this is that the observation equation (futures) becomes
nonlinear with respect to the states (factors). Hence, we can not use
the Kalman filtering methodology and the quasi/maximum likelihood
estimation procedure to estimate the parameters. To overcome this
problem, we employ the particle filtering approach and in particu-
lar, the convolution particle filter. After explaining the merits of the
algorithm in general, we recast our model within the same frame-
work. Finally, we run a simulation study to test the feasibility of the
proposed filter.
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Chapter 6

Conclusions and Future
Research

This chapter summarizes the main contributions of this thesis and
presents some directions for further research.

6.1 Conclusions

• In Chapter 1 of this thesis we have studied various aspects of
the energy markets where electricity and gas are clear exam-
ples. Since these markets and in particular the futures markets,
form the basis of our subsequent works, a brief description of
these markets is discussed in Chapter 1. Moreover, we discuss
the Day Ahead (DA) spot price and its characteristic. We show
that these markets contain big jumps, trend component and a
seasonality component. The jumps considered as outliers which
can be removed from the data set. The deterministic compo-
nents related to the trend and seasonality can be fitted to the
data using frequency domain analysis combined with standard
fitting procedures. We give examples of implementing these pro-
cedures to three different markets namely, APX, EEX and UK-
NBP Gas markets. The main objective of this chapter is to get
a clean data ready to be used in modeling the dynamics of the
uncertainty / stochastic part of the model
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• Chapter 2 deals with the mathematical tools needed for the rest
of the thesis. We present the Kalman filter in its finite and
infinite form. In the finite form we state both the continuous
and discrete version of the algorithm together with its corre-
sponding likelihood. Also, since the particle filtering algorithm
forms the basis of our subsequent works, a brief description of a
generic particle filter algorithm is given in this Chapter. It con-
sists of generating the samples sequentially according to some
importance function, then updating the weights of those sam-
ples given the recent observation and finally, resampling step
when necessary. The roles of both the importance sampling and
resampling steps are also discussed. With regard the infinite di-
mensional filter, we present the algorithm in an intuitive way so
that it resembles the finite dimensional version of the filter. Fur-
thermore, we present the infinite dimensional Brownian motion
and we discuss the observation mechanism with and without the
additive noise in the measurements.

• Chapter 3 deals with the first implementation of the theoretical
part of Chapter 2. Here, we illustrate the standard use of the
discrete Kalman filter as it used in the literature and the use of
MLE in estimating the parameters. After deriving a practical
model for the futures price in the energy market which depends
on a delivery period, we employ the geometric average approxi-
mation to the payoff of the futures price. Then present a sensi-
tivity analysis of the parameters when using the MLE method.
The simulations show that the likelihood function is almost flat
and it is extremely hard to find the optimal parameters. The
second part of this chapter employ the particle filtering method
so that we can avoid the geometric approximation. Here also
a sensitivity analysis of the parameters when using the MLE
method is presented. Also in this case, the optimal parameters
are hard to find.

• In Chapter 4, we have introduced our new model for the spot
price dynamics. The model is constructed in such a way that
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the observation noise is build in within the model and not an ex-
tra component just added for the sake of the implementation of
the Kalman filtering equations. This exogenously imposed extra
noise is used by many authors in the financial mathematics liter-
ature, and it was attributed to unconvincing arguments such as
bid-ask spread, non synchronicity of the data, etc. However, in
this chapter, we approach the modeling differently. In our setup,
on one hand, the added measurement noise is built in within the
model. On the other hand, the modeling of the correlation struc-
ture between the futures (observation) is a natural component
of our formulation. The main idea is to assume that the term
structure of futures prices on electricity given by Schwartz and
Smith (2000) model is affected by an error term represented by
a stochastic integral that generates infinite dimensional noise as
it should depend on all time of, or to maturity. Hence, we do
not need to add artificial noises to the observation equation in
order to use the filtering methodology. In this model we employ
the geometric approximation so that we can implement the in-
finite dimensional Kalman filtering algorithm. The factors are
estimated as solutions of the resulting filtering problem. The
new model has been tested using empirical study on the UK-
NBP Gas market and the feasibility of the proposed filter is es-
tablished.

• Chapter 5 addresses the issues of estimating the parameters of
the new model without the use of any approximation to the
payoff structure of the futures. As the observation given by the
futures price which is found in Chapter 4 is highly non-linear, we
propose to use a variant of the particle filter for the identification
of the factors and the parameters of the system. This filter is
based on the convolution kernel approximation techniques, and
termed convolution particle filter, see Rossi and Vila (2006). we
present our model in a form ready to be used in this framework.
We employ the Bayesian framework where the augmented state
variable which represents the state and the unknown parame-
ters, is processed by a filtering procedure. The parameters are
considered as random variables with a prescribed priori den-
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sity functions. Then an extended state variable joining all the
unknown quantities is considered, the posterior density of it is
approximated using particle filter. For this reason, we present
the approximation method to convert the infinite-dimensional
system to the finite dimensional one. At the end of the chapter
we present simulation work and studies, using real data to test
the model.

6.2 Future Research

In this section we review some issues which can open the direction for
future research.

• In Chapter 3, we have done a sensitivity analysis of the likeli-
hood function with respect to the parameters when using the
Kalman filter using the MLE method. In practice, the standard
approach is to use the pricing formula of the futures as a tool in
estimating the parameters through ”calibration”. This approach
resembles the implied volatility of the stock in the Black-Scholes
market. Although the second approach is essential for brokers
and market-makers, because they have to follow the market, it is
not consistent with the long-term investor as these implied pa-
rameters are inconsistent. An empirical study that investigate
this point in terms of profit/loss and compare it with the results
using filtering approach is a direction for further analysis.

• In Chapter 4, we use the geometric average approximation to our
futures pricing formula. As a result the state space equations are
linear. A new method which took a lot of attention is the use of
the Expectation Maximization algorithm when estimating the
parameters. However, this method in principle is not recursive
and it needs a lot of computational power. Further research of
optimizing this method and test it to our model is a direction
for further research.

• In Chapter 5, we have used the particle filtering methodology
when estimating the state and the parameters. Here, we used
the convolution particle filter because our observation equation
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has no extra noise term. However, within the convolution filter,
the kernel density is arbitrary. Hence, looking at the optimal
kernel density either theoretically or experimentally also worth
the effort.

• An extensive empirical study to compare the results in Chapter
3, Chapter 4 and Chapter 5, that gives the Pros and Cons of each
estimation method is important from practical point of view.

• Clearly, a new direction is to use our model for pricing options
and other financial instruments. In our thesis, the focus was
only on the futures contract.
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Abstract

An important issue in the energy market as in the financial market is the pa-
rameter estimation of the models representing the dynamics of the spot and the
futures. Because one is dealing with unobservable factors, a popular estimation
method is the maximum likelihood estimation (MLE), under the assumption that
observations are corrupted with additive Gaussian noise. In this framework, the
state space representation is used together with the Kalman filtering techniques,
and the parameter estimates are obtained through maximization of a likelihood
functional. The additional noise in the observation is interpreted to take into
account bid-ask spreads, price limits, etc. The argument is clearly forced and
unconvincing. The problem is that there is no feedback of the observation noise
to the spot price; this leads to a model that is not arbitrage free anymore. The
goal of this thesis is two folds:
Starting from the two factor model of Schwartz-Smith (2000), we formulate and
implement a new arbitrage free model for the futures prices of energy which can be
used in a mathematically sound way when estimating the parameter of the model,
using the method of maximum-likelihood. In our setup and by using a reverse
engineering concept, a new model is developed by perturbing the futures price
given by Schwartz-Smith by extra term that takes into account the uncertainties
in both the time, and time of maturity, of the term structure of the futures. We
ensure that the new model is arbitrage free. As a result of this formulation, the
added measurement noise is built in within the model, and the model parameters
can be calibrated through the derived likelihood functional without any ad hoc
observation noise.
The second goal is to estimate the parameters of the new model without any
modification to the nonlinear payoff of the futures. For that, we use the particle-
filtering algorithm to estimate the parameters. On the empirical side, we identify
the parameters of the model using real data from the European energy market.
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Samenvatting

Een belangrijke vraag in de energie-markt zoals in de financile markt is de param-
eterschatting van de modellen die de dynamiek van zowel de spot als de futures
weergeven. Vanwege het feit dat we met niet-waarneembare factoren werken, een
populaire schattingsmethode is de maximum likelihood schatting (MLE), onder
de aanname dat de waarnemingen zijn verstoord door additief Gaussische ruis.
In dit kader wordt gebruik gemaakt van de toestandsruimte representatie samen
met de Kalman filtering technieken, en de parameter schattingen worden verkre-
gen door het maximalisering van een likelihood functioneel. De extra ruis in de
waarneming wordt gerechtvaardigd door factoren als bid-ask spreads, prijslimi-
eten, etc. Het argument is duidelijk geforceerd en niet overtuigend. Het probleem
is dat er geen terugkoppeling is van de waarnemingsruis naar de spotprijs, en dit
leidt tot een model dat niet meer arbitrage vrije is. Het doel van dit proefschrift
is tweevouwdig:
Uitgaande van de twee factor model van Schwartz-Smith (2000), we formuleren
en implementeren een nieuwe arbitrage vrije model voor de futures-prijzen van
de energie dat kan gebruikt worden in een wiskundig verantwoorde manier bij
het schatten van de parameter van het model. In onze setup en met behulp van
een reverse-engineering concept, een nieuwe model is opgebouwd door het ver-
storen van de futures prijs gegeven door Schwartz-Smith die rekening houdt met
de onzekerheden in zowel de tijd, en tijd van “maturity”, van de term structuur
van de futures. Wij zorgen ervoor dat het nieuwe model is arbitrage vrije. Als
gevolg van deze formulering, is de toegevoegde meetruis ingebouwd bij het model,
en de model parameters kunnen worden gekalibreerd door middel van de afgeleide
likelihood functioneel zonder enige ad hoc waarnemingsruis.
Het tweede doel is om de parameters van het nieuwe model te schatten, zonder
enige lineaire benadering van het niet-lineaire model van de futures. Daarvoor
hebben we particle fltering algoritme gebruikt om de parameters te schatten. Aan
de empirische kant, identificeren we de parameters van het model met behulp van
gegevens uit de Europese energiemarkt.
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